cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343700 a(n) is the number of preference profiles in the stable marriage problem with n men and n women such that there are no pairs of people who rank each other first.

This page as a plain text file.
%I A343700 #21 Jan 20 2023 09:03:57
%S A343700 0,2,9984,28419102720,175302739963548794880,
%T A343700 5801674463718565478400000000000000,
%U A343700 2113937863028052653298578438638220083200000000000000,15500609395854457241550377325238753195602871153217230602240000000000000000
%N A343700 a(n) is the number of preference profiles in the stable marriage problem with n men and n women such that there are no pairs of people who rank each other first.
%C A343700 Two people who rank each other first are called soulmates. Thus, this sequence enumerates the profiles without soulmates.
%C A343700 This sequence is in contrast to the sequence A343698 which enumerates profiles with n pairs of soulmates.
%C A343700 The preference profiles with the most stable matchings do not have soulmates.
%H A343700 Michael De Vlieger, <a href="/A343700/b343700.txt">Table of n, a(n) for n = 1..22</a>
%H A343700 Matvey Borodin, Eric Chen, Aidan Duncan, Tanya Khovanova, Boyan Litchev, Jiahe Liu, Veronika Moroz, Matthew Qian, Rohith Raghavan, Garima Rastogi, and Michael Voigt, <a href="https://arxiv.org/abs/2201.00645">Sequences of the Stable Matching Problem</a>, arXiv:2201.00645 [math.HO], 2021.
%F A343700 a(n) = Sum_{i = 0..n} ((-1)^i * binomial(n, i)^2 * (n - 1)!^(2i) * i! * n!^(2n - 2i)).
%F A343700 a(n) = A350558(n)*A284458(n). - _Dan Eilers_, Jan 17 2023
%e A343700 For n=2, suppose A and B are the men and C and D are the women, then the only two possibilities are the following: a) A prefers C, C prefers B, B prefers D, and D prefers A; 2) A prefers D, D prefers B, B prefers C, and C prefers A.
%t A343700 Table[Total[
%t A343700   Table[(-1)^i Binomial[n, i]^2 (n - 1)!^(2 i) i! n!^(2 n - 2 i), {i,
%t A343700     0, n}]], {n, 10}]
%o A343700 (PARI) a(n) = sum(i=0, n, ((-1)^i * binomial(n, i)^2 * (n - 1)!^(2*i) * i! * n!^(2*n - 2*i))); \\ _Michel Marcus_, Jan 20 2023
%Y A343700 Cf. A185141, A343698, A343699, A350558, A284458.
%K A343700 nonn
%O A343700 1,2
%A A343700 _Tanya Khovanova_ and MIT PRIMES STEP Senior group, May 26 2021