This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343702 #16 May 10 2024 08:50:20 %S A343702 157,220,227,246,253,260,267,279,283,286,305,316,323,342,344,361,368, %T A343702 377,379,384,403,410,435,440,442,468,475,487,494,501,523,530,531,549, %U A343702 562,568,586,592,594,595,599,602,621,625,640,647,657,658,683,703,710,712,719,729,731,738,745,752,759,764,766,771,773,778,785 %N A343702 Numbers that are the sum of five positive cubes in two or more ways. %C A343702 This sequence differs from A048927: %C A343702 766 = 1^3 + 1^3 + 2^3 + 3^3 + 9^3 %C A343702 = 1^3 + 4^3 + 4^3 + 5^3 + 8^3 %C A343702 = 2^3 + 2^3 + 4^3 + 7^3 + 7^3. %C A343702 So 766 is a term, but not a term of A048927. %H A343702 David Consiglio, Jr., <a href="/A343702/b343702.txt">Table of n, a(n) for n = 1..20000</a> %e A343702 227 = 1^3 + 1^3 + 1^3 + 2^3 + 6^3 %e A343702 = 2^3 + 3^3 + 4^3 + 4^3 + 4^3 %e A343702 so 227 is a term of this sequence. %t A343702 Select[Range@1000,Length@Select[PowersRepresentations[#,5,3],FreeQ[#,0]&]>1&] (* _Giorgos Kalogeropoulos_, Apr 26 2021 *) %o A343702 (Python) %o A343702 from itertools import combinations_with_replacement as cwr %o A343702 from collections import defaultdict %o A343702 keep = defaultdict(lambda: 0) %o A343702 power_terms = [x**3 for x in range(1,50)]#n %o A343702 for pos in cwr(power_terms,5):#m %o A343702 tot = sum(pos) %o A343702 keep[tot] += 1 %o A343702 rets = sorted([k for k,v in keep.items() if v >= 2])#s %o A343702 for x in range(len(rets)): %o A343702 print(rets[x]) %Y A343702 Cf. A003328, A025406, A048927, A343704, A344238, A344795, A345511. %K A343702 nonn,easy %O A343702 1,1 %A A343702 _David Consiglio, Jr._, Apr 26 2021