cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343702 Numbers that are the sum of five positive cubes in two or more ways.

This page as a plain text file.
%I A343702 #16 May 10 2024 08:50:20
%S A343702 157,220,227,246,253,260,267,279,283,286,305,316,323,342,344,361,368,
%T A343702 377,379,384,403,410,435,440,442,468,475,487,494,501,523,530,531,549,
%U A343702 562,568,586,592,594,595,599,602,621,625,640,647,657,658,683,703,710,712,719,729,731,738,745,752,759,764,766,771,773,778,785
%N A343702 Numbers that are the sum of five positive cubes in two or more ways.
%C A343702 This sequence differs from A048927:
%C A343702 766 = 1^3 + 1^3 + 2^3 + 3^3 + 9^3
%C A343702     = 1^3 + 4^3 + 4^3 + 5^3 + 8^3
%C A343702     = 2^3 + 2^3 + 4^3 + 7^3 + 7^3.
%C A343702 So 766 is a term, but not a term of A048927.
%H A343702 David Consiglio, Jr., <a href="/A343702/b343702.txt">Table of n, a(n) for n = 1..20000</a>
%e A343702 227 = 1^3 + 1^3 + 1^3 + 2^3 + 6^3
%e A343702     = 2^3 + 3^3 + 4^3 + 4^3 + 4^3
%e A343702 so 227 is a term of this sequence.
%t A343702 Select[Range@1000,Length@Select[PowersRepresentations[#,5,3],FreeQ[#,0]&]>1&] (* _Giorgos Kalogeropoulos_, Apr 26 2021 *)
%o A343702 (Python)
%o A343702 from itertools import combinations_with_replacement as cwr
%o A343702 from collections import defaultdict
%o A343702 keep = defaultdict(lambda: 0)
%o A343702 power_terms = [x**3 for x in range(1,50)]#n
%o A343702 for pos in cwr(power_terms,5):#m
%o A343702     tot = sum(pos)
%o A343702     keep[tot] += 1
%o A343702 rets = sorted([k for k,v in keep.items() if v >= 2])#s
%o A343702 for x in range(len(rets)):
%o A343702     print(rets[x])
%Y A343702 Cf. A003328, A025406, A048927, A343704, A344238, A344795, A345511.
%K A343702 nonn,easy
%O A343702 1,1
%A A343702 _David Consiglio, Jr._, Apr 26 2021