cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343704 Numbers that are the sum of five positive cubes in three or more ways.

This page as a plain text file.
%I A343704 #24 Jul 29 2023 13:55:12
%S A343704 766,810,827,829,865,883,981,1018,1025,1044,1070,1105,1108,1142,1145,
%T A343704 1161,1168,1226,1233,1252,1259,1289,1350,1368,1376,1424,1431,1439,
%U A343704 1441,1457,1461,1487,1492,1494,1522,1529,1531,1538,1548,1550,1555,1568,1583,1585,1587,1590,1592,1593,1594,1609,1611,1613,1639
%N A343704 Numbers that are the sum of five positive cubes in three or more ways.
%C A343704 This sequence differs from A343705 at term 20 because 1252 = 1^3+1^3+5^3+5^3+10^3= 1^3+2^3+3^3+6^3+10^3 = 3^3+3^3+7^3+7^3+8^3 = 3^3+4^3+6^3+6^3+9^3. Thus this term is in this sequence but not A343705.
%H A343704 David Consiglio, Jr., <a href="/A343704/b343704.txt">Table of n, a(n) for n = 1..10000</a>
%e A343704 827 is a member of this sequence because 827 = 1^3 + 4^3 + 5^3 + 5^3 + 8^3 = 2^3 + 2^3 + 5^3 + 7^3 + 7^3 = 2^3 + 3^3 + 4^3 + 6^3 + 8^3.
%t A343704 Select[Range@2000,Length@Select[PowersRepresentations[#,5,3],FreeQ[#,0]&]>2&] (* _Giorgos Kalogeropoulos_, Apr 26 2021 *)
%o A343704 (Python)
%o A343704 from itertools import combinations_with_replacement as cwr
%o A343704 from collections import defaultdict
%o A343704 keep = defaultdict(lambda: 0)
%o A343704 power_terms = [x**3 for x in range(1,50)]#n
%o A343704 for pos in cwr(power_terms,5):#m
%o A343704     tot = sum(pos)
%o A343704     keep[tot] += 1
%o A343704 rets = sorted([k for k,v in keep.items() if v >= 3])#s
%o A343704 for x in range(len(rets)):
%o A343704     print(rets[x])
%Y A343704 Cf. A025407, A343702, A343705, A344034, A344243, A344796, A345512.
%K A343704 nonn,easy
%O A343704 1,1
%A A343704 _David Consiglio, Jr._, Apr 26 2021