This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343706 #9 Apr 27 2021 02:43:14 %S A343706 17,107,113,167,179,389,1031,1091,1097,1109,1181,1259,1439,1487,1523, %T A343706 1583,1619,1847,3023,3089,3257,3347,3359,3527,3719,7349,7529,7577, %U A343706 7589,7649,7949,9029,10067,10151,10247,10487,10739,10781,11057,11423,11621,11777,11897,11933,12119,12227,12641,13151 %N A343706 Lesser emirps (A109308) p such that A056964(p) is in A343703. %C A343706 Primes p such that the digit-reversal q = A004086(p) is a prime greater than p, and p+q = x*y for some x and y such that x+y and the concatenation x|y are primes. %H A343706 Robert Israel, <a href="/A343706/b343706.txt">Table of n, a(n) for n = 1..10000</a> %H A343706 Carlos Rivera, <a href="https://www.primepuzzles.net/puzzles/puzz_1036.htm">Puzzle 1036. P + R(p) such that...</a>, The Prime Puzzles and Problems Connection. %e A343706 a(4) = 167 is a term because 167 and 761 are primes with 167 < 761, and 167+761 = 928 = 32*29 with 3229 and 32+29 = 61 prime. %p A343706 revdigs:= proc(n) local L,i; %p A343706 L:= convert(n,base,10); %p A343706 add(L[-i]*10^(i-1),i=1..nops(L)) %p A343706 end proc: %p A343706 filter:= proc(p) local q,m,d,e; %p A343706 q:= revdigs(p); if q <= p then return false fi; %p A343706 if not isprime(p) or not isprime(q) then return false fi; %p A343706 m:= p+q; %p A343706 for d in numtheory:-divisors(m) do %p A343706 e:= m/d; %p A343706 if isprime(d*10^(1+ilog10(e))+e) and isprime(d+e) then return true fi %p A343706 od; %p A343706 false %p A343706 end proc: %Y A343706 Cf. A004086, A056964, A109308, A343703. %K A343706 nonn,base %O A343706 1,1 %A A343706 _J. M. Bergot_ and _Robert Israel_, Apr 26 2021