cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343706 Lesser emirps (A109308) p such that A056964(p) is in A343703.

This page as a plain text file.
%I A343706 #9 Apr 27 2021 02:43:14
%S A343706 17,107,113,167,179,389,1031,1091,1097,1109,1181,1259,1439,1487,1523,
%T A343706 1583,1619,1847,3023,3089,3257,3347,3359,3527,3719,7349,7529,7577,
%U A343706 7589,7649,7949,9029,10067,10151,10247,10487,10739,10781,11057,11423,11621,11777,11897,11933,12119,12227,12641,13151
%N A343706 Lesser emirps (A109308) p such that A056964(p) is in A343703.
%C A343706 Primes p such that the digit-reversal q = A004086(p) is a prime greater than p, and p+q = x*y for some x and y such that x+y and the concatenation x|y are primes.
%H A343706 Robert Israel, <a href="/A343706/b343706.txt">Table of n, a(n) for n = 1..10000</a>
%H A343706 Carlos Rivera, <a href="https://www.primepuzzles.net/puzzles/puzz_1036.htm">Puzzle 1036. P + R(p) such that...</a>, The Prime Puzzles and Problems Connection.
%e A343706 a(4) = 167 is a term because 167 and 761 are primes with 167 < 761, and 167+761 = 928 = 32*29 with 3229 and 32+29 = 61 prime.
%p A343706 revdigs:= proc(n) local L,i;
%p A343706     L:= convert(n,base,10);
%p A343706     add(L[-i]*10^(i-1),i=1..nops(L))
%p A343706 end proc:
%p A343706 filter:= proc(p) local q,m,d,e;
%p A343706    q:= revdigs(p); if q <= p then return false fi;
%p A343706    if not isprime(p) or not isprime(q) then return false fi;
%p A343706    m:= p+q;
%p A343706    for d in numtheory:-divisors(m) do
%p A343706      e:= m/d;
%p A343706      if isprime(d*10^(1+ilog10(e))+e) and isprime(d+e) then return true fi
%p A343706    od;
%p A343706    false
%p A343706 end proc:
%Y A343706 Cf. A004086, A056964, A109308, A343703.
%K A343706 nonn,base
%O A343706 1,1
%A A343706 _J. M. Bergot_ and _Robert Israel_, Apr 26 2021