cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343708 Numbers that are the sum of two positive cubes in exactly two ways.

This page as a plain text file.
%I A343708 #18 Jul 31 2021 23:46:43
%S A343708 1729,4104,13832,20683,32832,39312,40033,46683,64232,65728,110656,
%T A343708 110808,134379,149389,165464,171288,195841,216027,216125,262656,
%U A343708 314496,320264,327763,373464,402597,439101,443889,513000,513856,515375,525824,558441,593047,684019,704977,805688,842751,885248,886464
%N A343708 Numbers that are the sum of two positive cubes in exactly two ways.
%C A343708 This sequence differs from A001235 at term 455 because 87539319 = 167^3 + 436^3 = 228^3 + 423^3 = 255^3 + 414^3 = A011541(3). Thus, this term is not in this sequence but is in A001235.
%H A343708 David Consiglio, Jr., <a href="/A343708/b343708.txt">Table of n, a(n) for n = 1..1000</a>
%e A343708 13832 is in this sequence because 13832 = 2^3 + 24^3 = 18^3 + 20^3.
%t A343708 Select[Range@70000,Length@Select[PowersRepresentations[#,2,3],FreeQ[#,0]&]==2&] (* _Giorgos Kalogeropoulos_, Apr 26 2021 *)
%o A343708 (Python)
%o A343708 from itertools import combinations_with_replacement as cwr
%o A343708 from collections import defaultdict
%o A343708 keep = defaultdict(lambda: 0)
%o A343708 power_terms = [x**3 for x in range(1,1000)]#n
%o A343708 for pos in cwr(power_terms,2):#m
%o A343708     tot = sum(pos)
%o A343708     keep[tot] += 1
%o A343708 rets = sorted([k for k,v in keep.items() if v == 2])#s
%o A343708 for x in range(len(rets)):
%o A343708     print(rets[x])
%Y A343708 Cf. A001235, A025285, A025396, A338667, A344804.
%K A343708 nonn,easy
%O A343708 1,1
%A A343708 _David Consiglio, Jr._, Apr 26 2021