This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343708 #18 Jul 31 2021 23:46:43 %S A343708 1729,4104,13832,20683,32832,39312,40033,46683,64232,65728,110656, %T A343708 110808,134379,149389,165464,171288,195841,216027,216125,262656, %U A343708 314496,320264,327763,373464,402597,439101,443889,513000,513856,515375,525824,558441,593047,684019,704977,805688,842751,885248,886464 %N A343708 Numbers that are the sum of two positive cubes in exactly two ways. %C A343708 This sequence differs from A001235 at term 455 because 87539319 = 167^3 + 436^3 = 228^3 + 423^3 = 255^3 + 414^3 = A011541(3). Thus, this term is not in this sequence but is in A001235. %H A343708 David Consiglio, Jr., <a href="/A343708/b343708.txt">Table of n, a(n) for n = 1..1000</a> %e A343708 13832 is in this sequence because 13832 = 2^3 + 24^3 = 18^3 + 20^3. %t A343708 Select[Range@70000,Length@Select[PowersRepresentations[#,2,3],FreeQ[#,0]&]==2&] (* _Giorgos Kalogeropoulos_, Apr 26 2021 *) %o A343708 (Python) %o A343708 from itertools import combinations_with_replacement as cwr %o A343708 from collections import defaultdict %o A343708 keep = defaultdict(lambda: 0) %o A343708 power_terms = [x**3 for x in range(1,1000)]#n %o A343708 for pos in cwr(power_terms,2):#m %o A343708 tot = sum(pos) %o A343708 keep[tot] += 1 %o A343708 rets = sorted([k for k,v in keep.items() if v == 2])#s %o A343708 for x in range(len(rets)): %o A343708 print(rets[x]) %Y A343708 Cf. A001235, A025285, A025396, A338667, A344804. %K A343708 nonn,easy %O A343708 1,1 %A A343708 _David Consiglio, Jr._, Apr 26 2021