This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343726 #19 May 23 2021 00:19:22 %S A343726 0,4,16,25,36,49,81,121,169,196,361,529,576,729,961,1156,1369,1521, %T A343726 1936,3136,3721,3969,5329,5776,5929,7396,7569,7921,15129,15376,17161, %U A343726 17956,19321,31329,35721,51529,53361,57121,59536,97969,111556,113569,119716,131769 %N A343726 Squares with exactly one even digit. %C A343726 The even digit is always one of the last two digits. %C A343726 The only squares with no digits even are the one-digit odd squares 1 and 9. %H A343726 Jianing Song, <a href="/A343726/b343726.txt">Table of n, a(n) for n = 1..10000</a> %F A343726 Intersection of A000290 and A118070. %p A343726 q:= n-> (l-> is(add(i mod 2, i=l)=nops(l)-1))(convert(n, base, 10)): %p A343726 select(q, [i^2$i=0..400])[]; # _Alois P. Heinz_, May 22 2021 %t A343726 Select[Range[0, 400]^2, Count[IntegerDigits[#], _?EvenQ] == 1 &] (* _Amiram Eldar_, May 21 2021 *) %o A343726 (Python) %o A343726 def ok(sq): return sum(d in "02468" for d in str(sq)) == 1 %o A343726 def aupto(limit): %o A343726 sqs = (i*i for i in range(int(limit**.5)+2) if i*i <= limit) %o A343726 return list(filter(ok, sqs)) %o A343726 print(aupto(131769)) # _Michael S. Branicky_, May 20 2021 %o A343726 (PARI) isA343726(n) = if(issquare(n) && (n!=0), my(d=digits(n)); #d - vecsum(d%2) == 1, n==0) \\ _Jianing Song_, May 22 2021 %Y A343726 Cf. A000290, A030098, A118070, A343724, A343725. %K A343726 nonn,base %O A343726 1,2 %A A343726 _Jon E. Schoenfield_, May 19 2021