A343728 Numbers with all digits even whose squares have all but one digit odd.
0, 2, 4, 6, 24, 44, 86, 244, 424, 444, 846, 2444, 4424, 6286, 42424, 44244, 240244, 244086, 244866, 268286, 420846, 442244, 446286, 628646, 880646, 2402444, 4402044, 4442244, 8448666, 24040244, 24064866, 26682086, 26682866, 26828666, 28244244, 42400424
Offset: 1
Examples
244086 is a term: all its digits are even, and 244086^2 = 59577975396 has all but one digit odd. 244044086 is a term: all its digits are even, and 244044086^2 = 59557515911575396 has all but one digit odd.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..100
Programs
-
Mathematica
Select[Range[0, 10^6], AllTrue[IntegerDigits[#], EvenQ] && AllTrue[Most @ IntegerDigits[#^2], OddQ] &] (* Amiram Eldar, May 20 2021 *)
-
Python
def ok(n): r, s = str(n), str(n*n) return all(d in "02468" for d in r) and all(d in "13579" for d in s[:-1]) print(list(filter(ok, range(0, 42400425, 2)))) # Michael S. Branicky, May 20 2021
-
Python
from gmpy2 import digits A343728_list = [n for n in (2*int(digits(d,5)) for d in range(10**6)) if set(str(n**2)[:-1]) <= set('13579')] # Chai Wah Wu, May 21 2021
Comments