This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343735 #26 Jul 15 2021 03:06:37 %S A343735 1,3,9,33,99,525,3003,5445,5775,50505,53235,171171,525525,5073705, %T A343735 18999981,50555505,51666615,512272215,513828315,5026226205,5053553505, %U A343735 5184994815,5708778075,52252425225,502299992205,502875578205,524241142425,579024420975 %N A343735 Odd palindromes having more divisors than all smaller odd palindromes. %C A343735 A000005(a(n)) = A343736(n). %C A343735 Conjectures: %C A343735 (1) All terms after a(1)=1 are multiples of 3. %C A343735 (2) The number of terms after a(30)=34418522581443 that are not multiples of 5 is finite but not zero. %H A343735 Jon E. Schoenfield, <a href="/A343735/b343735.txt">Table of n, a(n) for n = 1..49</a> %e A343735 no. of %e A343735 n a(n) prime factorization divisors %e A343735 -- ---------- --------------------------------- -------- %e A343735 1 1 - 1 %e A343735 2 3 3 2 %e A343735 3 9 3^2 3 %e A343735 4 33 3 * 11 4 %e A343735 5 99 3^2 * 11 6 %e A343735 6 525 3 * 5^2 * 7 12 %e A343735 7 3003 3 * 7 * 11 * 13 16 %e A343735 8 5445 3^2 * 5 * 11^2 18 %e A343735 9 5775 3 * 5^2 * 7 * 11 24 %e A343735 10 50505 3 * 5 * 7 * 13 * 37 32 %e A343735 11 53235 3^2 * 5 * 7 * 13^2 36 %e A343735 12 171171 3^2 * 7 * 11 * 13 * 19 48 %e A343735 13 525525 3 * 5^2 * 7^2 * 11 * 13 72 %e A343735 14 5073705 3^3 * 5 * 7^2 * 13 * 59 96 %e A343735 15 18999981 3^3 * 7 * 11 * 13 * 19 * 37 128 %e A343735 16 50555505 3 * 5 * 7^2 * 11 * 13^2 * 37 144 %e A343735 17 51666615 3^2 * 5 * 7 * 11 * 13 * 31 * 37 192 %e A343735 18 512272215 3^3 * 5 * 7^3 * 13 * 23 * 37 256 %e A343735 19 513828315 3^2 * 5 * 7 * 11^2 * 13 * 17 * 61 288 %e A343735 20 5026226205 3 * 5 * 7^2 * 11 * 13 * 17 * 29 * 97 384 %Y A343735 Cf. A000005, A002113 (palindromes), A076888 (their number of divisors), A029950 (odd palindromes), A344422, A345250, A343736. %K A343735 nonn,base %O A343735 1,2 %A A343735 _Jon E. Schoenfield_, Jun 22 2021