cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343735 Odd palindromes having more divisors than all smaller odd palindromes.

This page as a plain text file.
%I A343735 #26 Jul 15 2021 03:06:37
%S A343735 1,3,9,33,99,525,3003,5445,5775,50505,53235,171171,525525,5073705,
%T A343735 18999981,50555505,51666615,512272215,513828315,5026226205,5053553505,
%U A343735 5184994815,5708778075,52252425225,502299992205,502875578205,524241142425,579024420975
%N A343735 Odd palindromes having more divisors than all smaller odd palindromes.
%C A343735 A000005(a(n)) = A343736(n).
%C A343735 Conjectures:
%C A343735 (1) All terms after a(1)=1 are multiples of 3.
%C A343735 (2) The number of terms after a(30)=34418522581443 that are not multiples of 5 is finite but not zero.
%H A343735 Jon E. Schoenfield, <a href="/A343735/b343735.txt">Table of n, a(n) for n = 1..49</a>
%e A343735                                                       no. of
%e A343735    n        a(n)  prime factorization                divisors
%e A343735   --  ----------  ---------------------------------  --------
%e A343735    1           1  -                                         1
%e A343735    2           3  3                                         2
%e A343735    3           9  3^2                                       3
%e A343735    4          33  3 * 11                                    4
%e A343735    5          99  3^2 * 11                                  6
%e A343735    6         525  3 * 5^2 * 7                              12
%e A343735    7        3003  3 * 7 * 11 * 13                          16
%e A343735    8        5445  3^2 * 5 * 11^2                           18
%e A343735    9        5775  3 * 5^2 * 7 * 11                         24
%e A343735   10       50505  3 * 5 * 7 * 13 * 37                      32
%e A343735   11       53235  3^2 * 5 * 7 * 13^2                       36
%e A343735   12      171171  3^2 * 7 * 11 * 13 * 19                   48
%e A343735   13      525525  3 * 5^2 * 7^2 * 11 * 13                  72
%e A343735   14     5073705  3^3 * 5 * 7^2 * 13 * 59                  96
%e A343735   15    18999981  3^3 * 7 * 11 * 13 * 19 * 37             128
%e A343735   16    50555505  3 * 5 * 7^2 * 11 * 13^2 * 37            144
%e A343735   17    51666615  3^2 * 5 * 7 * 11 * 13 * 31 * 37         192
%e A343735   18   512272215  3^3 * 5 * 7^3 * 13 * 23 * 37            256
%e A343735   19   513828315  3^2 * 5 * 7 * 11^2 * 13 * 17 * 61       288
%e A343735   20  5026226205  3 * 5 * 7^2 * 11 * 13 * 17 * 29 * 97    384
%Y A343735 Cf. A000005, A002113 (palindromes), A076888 (their number of divisors), A029950 (odd palindromes), A344422, A345250, A343736.
%K A343735 nonn,base
%O A343735 1,2
%A A343735 _Jon E. Schoenfield_, Jun 22 2021