This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343739 #21 Aug 06 2021 05:53:17 %S A343739 -1,8,4,-1,5,6,8,5,-1,4,8,2,8,0,5,-1,8,3,1,0,3,3,6,0,-1,6,8,4,9,8,9,7, %T A343739 1,6,2,-1,4,3,1,1,9,1,9,1,1,4,7,4,-1,9,0,4,6,0,3,0,1,4,3,0,3,2,6,-1,1, %U A343739 7,0,7,5,1,0,6,9,9,9,5,5,9,2,3,-1,2,6,2 %N A343739 a(n) is the last digit to appear in sqrt(n) (or -1 if n is a square). %C A343739 For the digit position in sqrt(n) at which the digit a(n) first appears, see A343740. %F A343739 a(100^q*n) = a(n), q > 0. - _Bernard Schott_, Jul 24 2021 %e A343739 a(2)=8 because 8 is the last digit to appear in sqrt(2) = 1.414213562373095048...; %e A343739 a(24)=0 because 0 is the last digit to appear in sqrt(24) = 4.898979485566356196394568149411782783931894961313340... %t A343739 Table[If[IntegerQ@ Sqrt@ n, -1, Function[s, FirstPosition[#, Max@ #][[1]] - 1 &@ Array[FirstPosition[s, #][[1]] &, 10, 0]]@ RealDigits[Sqrt[n], 10, 120][[1]]], {n, 84}] (* _Michael De Vlieger_, Jul 06 2021 *) %o A343739 (Python 3.8+) %o A343739 from math import isqrt %o A343739 def A343739(n): %o A343739 i = isqrt(n) %o A343739 if i**2 == n: %o A343739 return -1 %o A343739 m, dset = n, set() %o A343739 for d in (int(s) for s in str(i)): %o A343739 dset.add(d) %o A343739 if len(dset) == 10: %o A343739 return d %o A343739 while len(dset) < 10: %o A343739 m *= 100 %o A343739 d = isqrt(m) % 10 %o A343739 dset.add(d) %o A343739 return d # _Chai Wah Wu_, Jul 07 2021 %Y A343739 Cf. A023961, A343740, A343741, A343742. %K A343739 sign,base %O A343739 1,2 %A A343739 _Jon E. Schoenfield_, Jul 05 2021