This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343743 #76 Jun 14 2024 22:31:11 %S A343743 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,12,12,12,12,12, %T A343743 24,24,24,24,48,144,1440,1440,2880,120960,1451520,87091200, %U A343743 1902071808000,15184923989114880000,808017424794512875886459904961710757005754368000000000 %N A343743 a(n) is the largest base in which the order of the Monster group has (47 - n) zeros; alternatively, radicals of maximal powers dividing the order of the Monster group. %C A343743 Let z be a specified minimum number of zeros in the order of the Monster group; here z is a natural number, 1 <= z <= 46, with z = (47 - n). Then the largest base in which the order of the Monster group has at least z zeros is: %C A343743 Product_{k=1..20} prime(k)^floor(A051161(k)/z). %C A343743 When z = 1 this is the order of the Monster group. %C A343743 Every term in this sequence except the last is a number of least prime signature (A025487). %C A343743 In the following table, when the order of the Monster group has exactly z zeros, it also has s significant digits, and d = s + z total digits. %C A343743 z s d %C A343743 -- --- --- %C A343743 46 134 180 %C A343743 23 67 90 %C A343743 20 30 50 %C A343743 15 25 40 %C A343743 11 22 33 %C A343743 10 15 25 %C A343743 9 9 18 %C A343743 7 9 16 %C A343743 6 5 11 %C A343743 5 4 9 %C A343743 4 3 7 %C A343743 3 2 5 %C A343743 2 1 3 %C A343743 1 1 2 %D A343743 J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites]. %D A343743 J. H. Conway, N. J. A. Sloane, Sphere Packings, Lattices, and Groups. Springer, 3rd ed., 1999. %e A343743 a(27) = the largest base in which the order of the Monster group has at least (47 - 27) = 20 zeros. This is 2^(floor(46/20)) * 3^(floor(20/20)) = 2^2 * 3 = 12; the remaining terms in the product have exponent 0. %t A343743 f = FactorInteger[MonsterGroupM[] // GroupOrder]; Table[Times @@ ((First[#]^Floor[Last[#]/z]) & /@ f), {z, Max[f[[;; , 2]]], 1, -1}] (* _Amiram Eldar_, Jul 19 2021 *) %Y A343743 Cf. A051161. %K A343743 nonn,fini,full %O A343743 1,1 %A A343743 _Hal M. Switkay_, Jun 27 2021