cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343743 a(n) is the largest base in which the order of the Monster group has (47 - n) zeros; alternatively, radicals of maximal powers dividing the order of the Monster group.

This page as a plain text file.
%I A343743 #76 Jun 14 2024 22:31:11
%S A343743 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,12,12,12,12,12,
%T A343743 24,24,24,24,48,144,1440,1440,2880,120960,1451520,87091200,
%U A343743 1902071808000,15184923989114880000,808017424794512875886459904961710757005754368000000000
%N A343743 a(n) is the largest base in which the order of the Monster group has (47 - n) zeros; alternatively, radicals of maximal powers dividing the order of the Monster group.
%C A343743 Let z be a specified minimum number of zeros in the order of the Monster group; here z is a natural number, 1 <= z <= 46, with z = (47 - n). Then the largest base in which the order of the Monster group has at least z zeros is:
%C A343743 Product_{k=1..20} prime(k)^floor(A051161(k)/z).
%C A343743 When z = 1 this is the order of the Monster group.
%C A343743 Every term in this sequence except the last is a number of least prime signature (A025487).
%C A343743 In the following table, when the order of the Monster group has exactly z zeros, it also has s significant digits, and d = s + z total digits.
%C A343743    z   s   d
%C A343743   -- --- ---
%C A343743   46 134 180
%C A343743   23  67  90
%C A343743   20  30  50
%C A343743   15  25  40
%C A343743   11  22  33
%C A343743   10  15  25
%C A343743    9   9  18
%C A343743    7   9  16
%C A343743    6   5  11
%C A343743    5   4   9
%C A343743    4   3   7
%C A343743    3   2   5
%C A343743    2   1   3
%C A343743    1   1   2
%D A343743 J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites].
%D A343743 J. H. Conway, N. J. A. Sloane, Sphere Packings, Lattices, and Groups. Springer, 3rd ed., 1999.
%e A343743 a(27) = the largest base in which the order of the Monster group has at least (47 - 27) = 20 zeros. This is 2^(floor(46/20)) * 3^(floor(20/20)) = 2^2 * 3 = 12; the remaining terms in the product have exponent 0.
%t A343743 f = FactorInteger[MonsterGroupM[] // GroupOrder]; Table[Times @@ ((First[#]^Floor[Last[#]/z]) & /@ f), {z, Max[f[[;; , 2]]], 1, -1}] (* _Amiram Eldar_, Jul 19 2021 *)
%Y A343743 Cf. A051161.
%K A343743 nonn,fini,full
%O A343743 1,1
%A A343743 _Hal M. Switkay_, Jun 27 2021