This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343757 #36 May 25 2022 08:42:18 %S A343757 0,0,1,0,2,0,3,0,4,0,1,4,5,0,6,0,7,0,8,0,1,8,9,0,2,8,10,0,3,8,11,0,12, %T A343757 0,1,12,13,0,14,0,15,0,16,0,1,16,17,0,2,16,18,0,3,16,19,0,4,16,20,0,1, %U A343757 4,5,16,17,20,21,0,6,16,22,0,7,16,23,0,24 %N A343757 Irregular table read by rows; the n-th row contains the sums of distinct terms of the n-th row of table A343835, in ascending order. %C A343757 In other words, the n-th row contains the numbers k whose runs of 1's in the binary expansion also appear in that of n. %C A343757 The n-th row has 2^A069010(n) terms. %C A343757 This sequence has similarities with A295989. %H A343757 Rémy Sigrist, <a href="/A343757/b343757.txt">Table of n, a(n) for n = 0..8120</a> %H A343757 Rémy Sigrist, <a href="/A343757/a343757.png">Scatterplot of (n, T(n, k)) for n < 2^10</a> %H A343757 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a> %F A343757 T(n, 0) = 0. %F A343757 T(n, 1) = A342410(n) for any n > 0. %F A343757 T(n, 2^A069010(n)-1) = n. %e A343757 Table begins: %e A343757 0: [0] %e A343757 1: [0, 1] %e A343757 2: [0, 2] %e A343757 3: [0, 3] %e A343757 4: [0, 4] %e A343757 5: [0, 1, 4, 5] %e A343757 6: [0, 6] %e A343757 7: [0, 7] %e A343757 8: [0, 8] %e A343757 9: [0, 1, 8, 9] %e A343757 10: [0, 2, 8, 10] %e A343757 11: [0, 3, 8, 11] %e A343757 12: [0, 12] %e A343757 13: [0, 1, 12, 13] %e A343757 14: [0, 14] %e A343757 15: [0, 15] %e A343757 Table begins in binary: %e A343757 0: [0] %e A343757 1: [0, 1] %e A343757 10: [0, 10] %e A343757 11: [0, 11] %e A343757 100: [0, 100] %e A343757 101: [0, 1, 100, 101] %e A343757 110: [0, 110] %e A343757 111: [0, 111] %e A343757 1000: [0, 1000] %e A343757 1001: [0, 1, 1000, 1001] %e A343757 1010: [0, 10, 1000, 1010] %e A343757 1011: [0, 11, 1000, 1011] %e A343757 1100: [0, 1100] %e A343757 1101: [0, 1, 1100, 1101] %e A343757 1110: [0, 1110] %e A343757 1111: [0, 1111] %o A343757 (PARI) row(n) = { my (rr=[]); while (n, my (z=valuation(n, 2), o=valuation(n/2^z+1, 2), r=(2^o-1)*2^z); n-=r; rr = concat(rr, r)); vector(2^#rr, k, vecsum(vecextract(rr, k-1))) } %Y A343757 Cf. A069010, A295989, A343835. %K A343757 nonn,base,tabf %O A343757 0,5 %A A343757 _Rémy Sigrist_, May 01 2021