A343765 Lexicographically earliest sequence of distinct nonprime numbers such that for any n > 0, a(n+1) = a(n) XOR 2^k for some k >= 0 as small as possible (where XOR denotes the bitwise XOR operator).
1, 9, 8, 10, 14, 15, 143, 142, 140, 141, 133, 132, 134, 135, 391, 390, 388, 384, 385, 387, 386, 394, 395, 393, 392, 396, 398, 399, 415, 414, 412, 413, 405, 404, 406, 407, 403, 402, 400, 408, 410, 411, 475, 474, 472, 473, 477, 476, 478, 470, 471, 469, 468, 464
Offset: 1
Examples
The first terms, alongside their binary expansion, are: n a(n) bin(a(n)) -- ---- --------- 1 1 1 2 9 1001 3 8 1000 4 10 1010 5 14 1110 6 15 1111 7 143 10001111 8 142 10001110 9 140 10001100 10 141 10001101 11 133 10000101 12 132 10000100 13 134 10000110 14 135 10000111 15 391 110000111 16 390 110000110 17 388 110000100 18 384 110000000 19 385 110000001 20 387 110000011
Links
Programs
-
PARI
s=2^0; v=1; for (n=1, 54, print1 (v", "); s+=2^v; for (x=0, oo, if (!bittest(s, w=bitxor(v, 2^x)) && !isprime(w), v=w; break)))
Comments