This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343769 #8 Oct 09 2021 07:41:54 %S A343769 12,126,624,1260,1800,2100,2850,4536,5292,5580,8820,9900,12600,12642, %T A343769 14850,15600,17640,19110,21756,23400,24948,25200,25536,28350,47040, %U A343769 47304 %N A343769 Sorted areas of primitive Heronian triangles for which a rectangle exists with integer dimensions and with perimeter and area equal respectively to the perimeter and area of the triangle. %H A343769 Jason Zimba, <a href="https://jzimba.blogspot.com/2021/04/there-are-infinitely-many-rectangular.html">There are infinitely many rectangular Heronian triangles</a>. %e A343769 a(1) = 12 because 12 is the area of the 5-5-6 triangle, which is the least-area primitive Heronian triangle for which a rectangle exists with integer dimensions (2-by-6) and with perimeter (16) and area (12) equal respectively to the perimeter and area of the triangle. %e A343769 a(2) = 126 because 126 is the area of the 13-20-21 triangle, which is the second-least-area primitive Heronian triangle for which a rectangle exists with integer dimensions (6-by-21) and with perimeter (54) and area (126) equal respectively to the perimeter and area of the triangle. %t A343769 (* Adapted from Albert Lau's program for A224301 *) %t A343769 AMax = 10000; %t A343769 Do[c = p/b; %t A343769 a1 = Sqrt[b^2 + c^2 + 2 Sqrt[b^2 c^2 - 4 A^2]]; %t A343769 a2 = Sqrt[b^2 + c^2 - 2 Sqrt[b^2 c^2 - 4 A^2]]; %t A343769 If[IntegerQ[a2] && GCD[a2, b, c] == 1 && %t A343769 a1 > a2 >= b && (per = a2 + b + c; %t A343769 IntegerQ[(per + Sqrt[per^2 - 16 A])/4]), A // Sow(*{A,a2,b,c}// %t A343769 Sow*)]; %t A343769 If[IntegerQ[a1] && %t A343769 GCD[a1, b, c] == 1 && (per = a1 + b + c; %t A343769 IntegerQ[(per + Sqrt[per^2 - 16 A])/4]), A // Sow(*{A,a1,b,c}// %t A343769 Sow*)];, {A, 6, AMax, 6}, {p, %t A343769 4 A^2 // Divisors // %t A343769 Select[#, EvenQ[#] && # >= 2 A &] & // #/2 + 2 A^2/# & // %t A343769 Select[#, IntegerQ] &}, {b, %t A343769 p // Divisors // Select[#, #^2 >= p &] &}] // Reap // Last // Last %t A343769 {a1, a2, c} =.; %Y A343769 Subsequence of A224301. %K A343769 nonn,more %O A343769 1,1 %A A343769 _Jason Zimba_, Apr 28 2021