cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343783 a(n) is the largest primorial number (A002110) which divides phi(n).

This page as a plain text file.
%I A343783 #23 May 05 2021 21:03:32
%S A343783 1,1,2,2,2,2,6,2,6,2,2,2,6,6,2,2,2,6,6,2,6,2,2,2,2,6,6,6,2,2,30,2,2,2,
%T A343783 6,6,6,6,6,2,2,6,6,2,6,2,2,2,6,2,2,6,2,6,2,6,6,2,2,2,30,30,6,2,6,2,6,
%U A343783 2,2,6,2,6,6,6,2,6,30,6,6,2,6,2,2,6,2,6
%N A343783 a(n) is the largest primorial number (A002110) which divides phi(n).
%H A343783 Amiram Eldar, <a href="/A343783/b343783.txt">Table of n, a(n) for n = 1..10000</a>
%H A343783 Paul Pollack and Carl Pomerance, <a href="https://doi.org/10.1215/00192082-8591576">Phi, primorials, and Poisson</a>, Illinois J. Math., Vol. 64, No. 3 (2020), pp. 319-330; <a href="http://pollack.uga.edu/IJM-ppp.pdf">alternative link</a>.
%F A343783 a(n) = A053589(A000010(n)).
%F A343783 Let pr(n) be the largest prime divisor of a(n) (i.e., a(n) = pr(n)# = A034386(pr(n))). Then pr(n) ~ log(log(n))/log(log(log(n))) on a set of integers of asymptotic density 1 (Pollack and Pomerance, 2020).
%F A343783 From _Bernard Schott_, May 05 2021: (Start)
%F A343783 a(2n) = a(n) for n>=1.
%F A343783 a(n) = 1 iff n = 1 or n = 2.
%F A343783 a(n) = 2 iff 3 does not divide phi(n) (A088232)
%F A343783 a(n) >= 6 iff 3 divides phi(n) (A066498). (End)
%e A343783 a(3) = 2 since phi(3) = 2 and 2 = A002110(1).
%e A343783 a(5) = 2 since phi(5) = 4 and 2 = A002110(1) is the largest primorial dividing 4.
%e A343783 a(7) = 6 since phi(7) = 6 and 6 = A002110(2).
%t A343783 prim[n_] := Times @@ Prime[Range[n]]; gp[n_] := Module[{k = 1}, While[Divisible[n, prim[k]], k++]; prim[k - 1]]; a[n_] := gp[EulerPhi[n]]; Array[a, 100]
%o A343783 (PARI) f(n) = my(s=1); forprime(p=2, , if(n%p, return(s), s *= p)); \\ A053589
%o A343783 a(n) = f(eulerphi(n)); \\ _Michel Marcus_, May 01 2021
%Y A343783 Cf. A000010, A002110, A034386, A053589.
%K A343783 nonn
%O A343783 1,3
%A A343783 _Amiram Eldar_, Apr 29 2021