A343784 Decimal expansion of Sum_{k>=1} A065043(k)/2^k.
5, 8, 1, 1, 6, 2, 3, 1, 8, 8, 1, 1, 9, 6, 4, 8, 9, 2, 9, 7, 9, 8, 9, 8, 6, 6, 7, 9, 1, 8, 1, 1, 2, 0, 4, 5, 8, 5, 0, 0, 2, 4, 1, 8, 9, 6, 1, 4, 4, 0, 7, 9, 7, 4, 5, 9, 6, 7, 2, 1, 4, 6, 9, 4, 8, 5, 3, 9, 2, 6, 6, 2, 3, 8, 4, 5, 0, 9, 7, 6, 2, 3, 9, 8, 6, 0, 1
Offset: 0
Examples
0.58116231881196489297989866791811204585002418961440...
Links
- Peter Borwein and Michael Coons, Transcendence of the Gaussian Liouville number and relatives, arXiv:0806.1694 [math.NT], 2008.
- Michael J. Coons, Some aspects of analytic number theory: parity, transcendence, and multiplicative functions, Ph.D. Thesis, Department of Mathematics, Simon Fraser University, 2009.
Programs
-
Mathematica
RealDigits[Sum[(LiouvilleLambda[n] + 1)/2^(n + 1), {n, 1, 400}], 10, 100][[1]]
Comments