cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343786 Decimal expansion of Sum_{k>=0} 2^(3^k)/(2^(2*(3^k)) + 2^(3^k) + 1).

This page as a plain text file.
%I A343786 #6 Apr 30 2021 07:02:26
%S A343786 3,9,7,2,5,2,6,4,4,5,7,8,0,1,4,5,3,5,2,8,4,4,4,0,6,1,0,2,5,2,9,6,7,6,
%T A343786 4,6,4,8,4,1,9,2,6,5,3,5,3,3,3,5,0,1,0,6,0,3,8,1,0,6,1,6,4,2,5,4,4,9,
%U A343786 2,1,2,2,6,1,2,5,8,0,6,6,5,9,7,1,1,5,3
%N A343786 Decimal expansion of Sum_{k>=0} 2^(3^k)/(2^(2*(3^k)) + 2^(3^k) + 1).
%C A343786 Proven to be a transcendental number by Borwein and Coons (2008).
%H A343786 Peter Borwein and Michael Coons, <a href="https://arxiv.org/abs/0806.1694">Transcendence of the Gaussian Liouville number and relatives</a>, arXiv:0806.1694 [math.NT], 2008.
%H A343786 Michael J. Coons, <a href="https://summit.sfu.ca/item/9417">Some aspects of analytic number theory: parity, transcendence, and multiplicative functions</a>, Ph.D. Thesis, Department of Mathematics, Simon Fraser University, 2009.
%H A343786 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>.
%F A343786 Equals Sum_{k>=1} A343785(k)/2^k.
%e A343786 0.39725264457801453528444061025296764648419265353335...
%t A343786 f[x_] := x/(x^2 + x + 1); RealDigits[Sum[f[2^(3^n)], {n, 0, 10}], 10, 100][[1]]
%Y A343786 Cf. A023365, A343785.
%K A343786 nonn,cons,easy
%O A343786 0,1
%A A343786 _Amiram Eldar_, Apr 29 2021