cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343795 Number of Dumont permutations of the fourth kind of length 2n avoiding the pattern 312.

This page as a plain text file.
%I A343795 #19 May 04 2021 18:09:25
%S A343795 1,1,3,10,39,174,872,4805,28474,178099,1160173,7803860,53924841,
%T A343795 381640934,2761331130,20400560942,153738854242,1180631743440,
%U A343795 9229687049249,73372263658451,592476077260123,4854377724124700,40315729803287046,339065862485375334,2885324166565733641
%N A343795 Number of Dumont permutations of the fourth kind of length 2n avoiding the pattern 312.
%C A343795 Dumont permutations of the fourth kind are permutations of even length where all deficiencies (drops) are even values at even positions.
%D A343795 O. Jones, Enumeration of Dumont permutations avoiding certain four-letter patterns, Ph.D. thesis, Howard University, 2019.
%H A343795 A. Burstein and O. Jones, <a href="https://arxiv.org/abs/2002.12189">Enumeration of Dumont permutations avoiding certain four-letter patterns</a>, arXiv:2002.12189  [math.CO], 2020.
%H A343795 A. Burstein, M. Josuat-Vergès, and W. Stromquist, <a href="http://puma.dimai.unifi.it/21_2/5_Burstein_Josuat-Verges_Stromquist.pdf">New Dumont permutations</a>, Pure Math. Appl. (Pu.M.A.) 21 (2010), no. 2, 177-206.
%F A343795 Let F_k(x) be the truncation of the g.f. of A048990 to a polynomial of degree k. Let G_k(x) be the truncation of the g.f. of A024492 to a polynomial of degree k. Let G_{-1}(x) = 0. For k>=0, define A_k(x) recursively as follows: A_k(x) = F_k(x)/((1-x*G_{k-1}(x))^2-x*F_k(x)/(1-x*G_k(x)-x*F_k(x)^2/(1-x*A_{k+1}(x)))). Then A_0(x) is the g.f. of this sequence.
%e A343795 For n=2, a(2)=3 counts the permutations 1234, 1342, 1432.
%o A343795 (PARI) seq(n)={my(h=sqrt(1-16*x + O(x*x^n)), F=sqrt((1-h)/(8*x)), G=(1-sqrt((1+h)/2))/(2*x), A=O(1)); forstep(k=n\3, 0, -1, my(f=Pol(F + O(x*x^k))); A = f/((1 - x*Pol(G + O(x^k)))^2 - x*f/(1 - x*Pol(G + O(x*x^k)) - x*f^2/(1 - x*A))) ); Vec(A + O(x*x^n))} \\ _Andrew Howroyd_, Apr 29 2021
%Y A343795 Cf. A000108 (permutations avoiding 312), A024492, A048990, A110501 (length 2n Dumont permutations of 4th kind).
%K A343795 easy,nonn
%O A343795 0,3
%A A343795 _Alexander Burstein_ and _Opel Jones_, Apr 29 2021
%E A343795 Terms a(12) and beyond from _Andrew Howroyd_, Apr 29 2021