A343800 Number of sets in the geometry determined by the Hausdorff metric at each location between two sets defined by a complete bipartite graph K(6,n) (with n at least 4) missing three edges, where exactly two removed edges are incident to the same vertex in the 6-point set and exactly two removed edges are incident to the same vertex in the other set.
978064, 86336272, 6348047008, 430432446400, 28099268578864, 1801251897183472, 114448204851788608, 7240412761411376800, 457083355837815526864, 28825337854868779198672, 1816898392511988031818208, 114492570488330137017059200, 7213899161676798784740778864
Offset: 4
Links
- Steven Schlicker, Roman Vasquez, and Rachel Wofford, Integer Sequences from Configurations in the Hausdorff Metric Geometry via Edge Covers of Bipartite Graphs, J. Int. Seq. (2023) Vol. 26, Art. 23.6.6.
- Index entries for linear recurrences with constant coefficients, signature (120,-4593,69688,-428787,978768,-615195).
Crossrefs
Sequences of segments from removing edges from bipartite graphs A335608-A335613, A337416-A337418, A340173-A340175, A340199-A340201, A340897-A340899, A342580, A342796, A342850, A340403-A340405, A340433-A340438, A341551-A341553, A342327-A342328, A343372-A343374, A343800. Polygonal chain sequences A152927, A152928, A152929, A152930, A152931, A152932, A152933, A152934, A152939. Number of {0,1} n X n matrices with no zero rows or columns A048291.
Programs
-
Mathematica
Array[465*63^# - 1110*31^# + 967*15^# - 388*7^# + 70*3^# - 4 &[# - 2] &, 12, 4] (* Michael De Vlieger, May 01 2021 *)
Formula
a(n) = 465*63^(n-2) - 1110*31^(n-2) + 967*15^(n-2) - 388*7^(n-2) + 70*3^(n-2) - 4.
Comments