This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343804 #10 Apr 30 2021 10:56:02 %S A343804 1,1,1,1,4,1,1,15,11,1,1,64,96,26,1,1,325,824,448,57,1,1,1956,7417, %T A343804 6718,1779,120,1,1,13699,71595,96633,43411,6429,247,1,1,109600,746232, %U A343804 1393588,944618,243928,21898,502,1,1,986409,8403000,20600856,19521210,7739362,1250774,71742,1013,1 %N A343804 T(n, k) = Sum_{j=k..n} binomial(n, j)*E2(j, j-k), where E2 are the Eulerian numbers A201637. Triangle read by rows, T(n, k) for 0 <= k <= n. %e A343804 Triangle starts: %e A343804 [0] 1 %e A343804 [1] 1, 1 %e A343804 [2] 1, 4, 1 %e A343804 [3] 1, 15, 11, 1 %e A343804 [4] 1, 64, 96, 26, 1 %e A343804 [5] 1, 325, 824, 448, 57, 1 %e A343804 [6] 1, 1956, 7417, 6718, 1779, 120, 1 %e A343804 [7] 1, 13699, 71595, 96633, 43411, 6429, 247, 1 %e A343804 [8] 1, 109600, 746232, 1393588, 944618, 243928, 21898, 502, 1 %e A343804 [9] 1, 986409, 8403000, 20600856, 19521210, 7739362, 1250774, 71742, 1013, 1 %p A343804 T := (n, k) -> add(binomial(n, r)*combinat:-eulerian2(r, r-k), r = k..n): %p A343804 seq(seq(T(n, k), k = 0..n), n = 0..9); %Y A343804 Row sums: A084262. %Y A343804 Cf. A046802 (Eulerian first order). %K A343804 nonn,tabl %O A343804 0,5 %A A343804 _Peter Luschny_, Apr 30 2021