This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343805 #14 May 02 2021 06:29:27 %S A343805 1,1,1,1,4,7,1,9,39,87,1,16,126,608,1553,1,25,310,2470,12985,36145,1, %T A343805 36,645,7560,62595,351252,1037367,1,49,1197,19285,225715,1946259, %U A343805 11481631,35402983,1,64,2044,43232,673190,8011136,71657404,439552864,1400424097 %N A343805 T(n, k) = [x^k] n! [t^n] 1/(exp((V*(2 + V))/(4*t))*sqrt(1 + V)) where V = W(-2*t*x) and W denotes the Lambert function. Table read by rows, T(n, k) for 0 <= k <= n. %C A343805 The rows of the triangle give the coefficients of the Ehrhart polynomials of integral Coxeter permutahedra of type B. These polynomials count lattice points in a dilated lattice polytope. For a definition see Ardila et al. (p. 1158), the generating functions of these polynomials for the classical root systems are given in theorem 5.2 (p. 1163). %H A343805 Federico Ardila, Matthias Beck, and Jodi McWhirter, <a href="https://doi.org/10.18257/raccefyn.1189">The arithmetic of Coxeter permutahedra</a>, Rev. Acad. Colomb. Cienc. Ex. Fis. Nat. 44(173):1152-1166, 2020. %e A343805 Triangle starts: %e A343805 [0] 1; %e A343805 [1] 1, 1; %e A343805 [2] 1, 4, 7; %e A343805 [3] 1, 9, 39, 87; %e A343805 [4] 1, 16, 126, 608, 1553; %e A343805 [5] 1, 25, 310, 2470, 12985, 36145; %e A343805 [6] 1, 36, 645, 7560, 62595, 351252, 1037367; %e A343805 [7] 1, 49, 1197, 19285, 225715, 1946259, 11481631, 35402983; %e A343805 [8] 1, 64, 2044, 43232, 673190, 8011136, 71657404, 439552864, 1400424097; %p A343805 alias(W = LambertW): %p A343805 EhrB := exp(-W(-2*t*x)/(2*t) - W(-2*t*x)^2/(4*t))/sqrt(1+W(-2*t*x)): %p A343805 ser := series(EhrB, x, 10): cx := n -> n!*coeff(ser, x, n): %p A343805 T := n -> seq(coeff(cx(n), t, k), k=0..n): seq(T(n), n = 0..9); %t A343805 P := ProductLog[-2 t x]; gf := 1/(E^((P (2 + P))/(4 t)) Sqrt[1 + P]); %t A343805 ser := Series[gf, {x, 0, 10}]; cx[n_] := n! Coefficient[ser, x, n]; %t A343805 Table[CoefficientList[cx[n], t], {n, 0, 8}] // Flatten %Y A343805 Cf. A138464 (type A), this sequence (type B), A343806 (type C), A343807 (type D). %K A343805 nonn,tabl %O A343805 0,5 %A A343805 _Peter Luschny_, May 01 2021