A343806 T(n, k) = [x^k] n! [t^n] 1/(exp((V*(2 + 2*t + V))/(4*t))*sqrt(1 + V)) where V = W(-2*t*x) and W denotes the Lambert function. Table read by rows, T(n, k) for 0 <= k <= n.
1, 1, 2, 1, 6, 14, 1, 12, 66, 172, 1, 20, 192, 1080, 3036, 1, 30, 440, 4040, 23580, 69976, 1, 42, 870, 11600, 106620, 644568, 1991656, 1, 56, 1554, 28140, 364140, 3396960, 21170520, 67484880, 1, 72, 2576, 60592, 1037400, 13362272, 126973504, 811924032, 2652878864
Offset: 0
Examples
Triangle starts: [0] 1; [1] 1, 2; [2] 1, 6, 14; [3] 1, 12, 66, 172; [4] 1, 20, 192, 1080, 3036; [5] 1, 30, 440, 4040, 23580, 69976; [6] 1, 42, 870, 11600, 106620, 644568, 1991656; [7] 1, 56, 1554, 28140, 364140, 3396960, 21170520, 67484880; [8] 1, 72, 2576, 60592, 1037400, 13362272, 126973504, 811924032, 2652878864;
Links
- Federico Ardila, Matthias Beck, and Jodi McWhirter, The arithmetic of Coxeter permutahedra, Rev. Acad. Colomb. Cienc. Ex. Fis. Nat. 44(173):1152-1166, 2020.
Programs
-
Maple
alias(W = LambertW): EhrC := exp(-(t+1)*W(-2*t*x)/(2*t) - W(-2*t*x)^2/(4*t))/sqrt(1+W(-2*t*x)): ser := series(EhrC, x, 10): cx := n -> n!*coeff(ser, x, n): T := n -> seq(coeff(cx(n), t, k), k=0..n): seq(T(n), n = 0..8);
-
Mathematica
P := ProductLog[-2 t x]; gf := 1/(E^((P (2 + 2 t + P))/(4 t)) Sqrt[1 + P]); ser := Series[gf, {x, 0, 10}]; cx[n_] := n! Coefficient[ser, x, n]; Table[CoefficientList[cx[n], t], {n, 0, 8}] // Flatten
Comments