This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343807 #12 May 02 2021 06:29:58 %S A343807 1,1,0,1,2,2,1,6,18,32,1,12,72,280,636,1,20,200,1320,6060,15744,1,30, %T A343807 450,4480,32460,166536,470680,1,42,882,12320,127260,996408,5526136, %U A343807 16542336,1,56,1568,29232,405720,4384800,36529920,214436160,669165840 %N A343807 T(n, k) = [x^k] n! [t^n] 1/(exp((V*(2 - 2*t + V))/(4*t))*sqrt(1 + V)) where V = W(-2*t*x) and W denotes the Lambert function. Table read by rows, T(n, k) for 0 <= k <= n. %C A343807 The rows of the triangle give the coefficients of the Ehrhart polynomials of integral Coxeter permutahedra of type D. These polynomials count lattice points in a dilated lattice polytope. For a definition see Ardila et al. (p. 1158), the generating functions of these polynomials for the classical root systems are given in theorem 5.2 (p. 1163). %H A343807 Federico Ardila, Matthias Beck, and Jodi McWhirter, <a href="https://doi.org/10.18257/raccefyn.1189">The arithmetic of Coxeter permutahedra</a>, Rev. Acad. Colomb. Cienc. Ex. Fis. Nat. 44(173):1152-1166, 2020. %e A343807 [0] 1; %e A343807 [1] 1, 0; %e A343807 [2] 1, 2, 2; %e A343807 [3] 1, 6, 18, 32; %e A343807 [4] 1, 12, 72, 280, 636; %e A343807 [5] 1, 20, 200, 1320, 6060, 15744; %e A343807 [6] 1, 30, 450, 4480, 32460, 166536, 470680; %e A343807 [7] 1, 42, 882, 12320, 127260, 996408, 5526136, 16542336; %e A343807 [8] 1, 56, 1568, 29232, 405720, 4384800, 36529920, 214436160, 669165840; %p A343807 alias(W = LambertW): %p A343807 EhrD := exp(-(1-t)*W(-2*t*x)/(2*t) - W(-2*t*x)^2/(4*t)) / sqrt(1+W(-2*t*x)): %p A343807 ser := series(EhrD, x, 10): cx := n -> n!*coeff(ser, x, n): %p A343807 T := n -> seq(coeff(cx(n), t, k), k = 0..n): seq(T(n), n = 0..8); %t A343807 P := ProductLog[-2 t x]; gf := 1/(E^((P (2 - 2 t + P))/(4 t)) Sqrt[1 + P]); %t A343807 ser := Series[gf, {x, 0, 10}]; cx[n_] := n! Coefficient[ser, x, n]; %t A343807 Table[If[n == 1, {1, 0}, CoefficientList[cx[n], t]], {n, 0, 8}] // Flatten %Y A343807 Cf. A138464 (type A), A343805 (type B), A343806 (type C), this sequence (type D). %K A343807 nonn,tabl %O A343807 0,5 %A A343807 _Peter Luschny_, May 01 2021