This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343809 #45 Sep 05 2023 12:22:08 %S A343809 2,1,5,4,3,10,9,8,7,6,17,16,15,14,13,12,11,28,27,26,25,24,23,22,21,20, %T A343809 19,18,41,40,39,38,37,36,35,34,33,32,31,30,29,58,57,56,55,54,53,52,51, %U A343809 50,49,48,47,46,45,44,43,42,77,76,75,74,73,72,71,70,69,68,67,66,65,64,63,62,61,60,59 %N A343809 Divide the positive integers into subsets of lengths given by successive primes, then reverse the order of terms in each subset. %C A343809 From _Omar E. Pol_, Apr 30 2021: (Start) %C A343809 Irregular triangle read by rows T(n,k) in which row n lists the next p positive integers in decreasing order, where p is the n-th prime, with n >= 1. %C A343809 The triangle has the following properties: %C A343809 Column 1 gives the nonzero terms of A007504. %C A343809 Column 2 gives A237589. %C A343809 Column 3 gives A071148. %C A343809 Column 4 gives the terms > 2 of A343859. %C A343809 Column 5 gives the absolute values of the terms < -1 of A282329. %C A343809 Column 6 gives the terms > 7 of A082548. %C A343809 Column 7 gives the terms > 6 of A115030. %C A343809 Records are in the column 1. %C A343809 Indices of records are in the right border. %C A343809 Right border gives A014284. %C A343809 Row lengths give A000040. %C A343809 Row products give A078423. %C A343809 Row sums give A034956. (End) %H A343809 Paolo Xausa, <a href="/A343809/b343809.txt">Table of n, a(n) for n = 1..10887</a> (rows n = 1..70 of triangle, flattened) %H A343809 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a> %F A343809 T(n,k) = A007504(n) - k + 1, with n >= 1 and 1 <= k <= A000040(n). - _Omar E. Pol_, May 01 2021 %e A343809 From _Omar E. Pol_, Apr 30 2021: (Start) %e A343809 Written as an irregular triangle in which row lengths give A000040 the sequence begins: %e A343809 2, 1; %e A343809 5, 4, 3; %e A343809 10, 9, 8, 7, 6; %e A343809 17, 16, 15, 14, 13, 12, 11; %e A343809 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18; %e A343809 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29; %e A343809 58, 57, 56, 55, 54, 53, 52, 51, 50, 49, 48, 47, 46, 45, 44, 43, 42; %e A343809 77, 76, 75, 74, 73, 72, 71, 70, 69, 68, 67, 66, 65, 64, 63, 62, 61, 60, 59; %e A343809 ... %e A343809 (End) %p A343809 R:= NULL: t:= 1: %p A343809 for i from 1 to 20 do %p A343809 p:= ithprime(i); %p A343809 R:= R, seq(i,i=t+p-1..t,-1); %p A343809 t:= t+p; %p A343809 od: %p A343809 R; # _Robert Israel_, Apr 30 2021 %t A343809 With[{nn=10},Reverse/@TakeList[Range[Total[Prime[Range[nn]]]],Prime[Range[nn]]]]//Flatten (* _Harvey P. Dale_, Apr 27 2022 *) %Y A343809 Cf. A000027, A000040, A007504, A014284, A034956, A038722, A071148, A073612 (fixed points), A078423, A082548, A115030, A237589, A282329, A343859, A344891. %K A343809 nonn,tabf %O A343809 1,1 %A A343809 _Paolo Xausa_, Apr 30 2021