A343823 Numbers k > 10 such that every permutation of the digits of k is congruent to 3 (mod 4).
11, 15, 19, 51, 55, 59, 91, 95, 99, 111, 115, 119, 151, 155, 159, 191, 195, 199, 511, 515, 519, 551, 555, 559, 591, 595, 599, 911, 915, 919, 951, 955, 959, 991, 995, 999, 1111, 1115, 1119, 1151, 1155, 1159, 1191, 1195, 1199, 1511, 1515, 1519, 1551, 1555, 1559
Offset: 11
Examples
159 = 4*39 + 3, 195 = 4*48 + 3, 519 = 4*104 + 3, 591 = 4*147 + 3, 915 = 4*228 + 3, 951 = 4*237 + 3.
Programs
-
Mathematica
Select[Range[11, 1600], AllTrue[Permutations[IntegerDigits[#]], Mod[FromDigits[#1], 4] == 3 &] &] (* Amiram Eldar, Apr 30 2021 *)
Comments