cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343813 Number of partitions of prime(n) containing at least one prime.

This page as a plain text file.
%I A343813 #29 May 26 2021 13:47:29
%S A343813 1,2,5,12,48,88,269,450,1176,4355,6558,20958,43412,61733,122194,
%T A343813 324532,820827,1107647,2652517,4655220,6133664,13751210,23192039,
%U A343813 49730098,132657130,213646624,270244858,429702432,540212859,848899870,3905568236,5952945182,11078643138
%N A343813 Number of partitions of prime(n) containing at least one prime.
%H A343813 David A. Corneth, <a href="/A343813/b343813.txt">Table of n, a(n) for n = 1..10000</a>
%F A343813 a(n) = A235945(A000040(n)).
%e A343813 a(4) = 12 because there are 12 partitions of prime(4) = 7 that contain at least one prime. These partitions are [7], [5,2], [5,1,1], [4,3], [4,2,1], [3,3,1], [3,2,2], [3,2,1,1], [3,1,1,1,1], [2,2,2,1], [2,2,1,1,1], [2,1,1,1,1,1].
%t A343813 nterms=20;Table[Total[Map[If[Count[#, _?PrimeQ]>0,1,0] &,IntegerPartitions[Prime[n]]]],{n,1,nterms}]
%o A343813 (PARI) forprime(p=2,59,my(m=0); forpart(X=p, for(k=1,#X, if(isprime(X[k]),m++;break))); print1(m,", ")) \\ _Hugo Pfoertner_, Apr 30 2021
%o A343813 (PARI) seq(n)={my(p=primes(n), m=p[#p]); vecextract(Vec(1/eta(x+O(x*x^m)) - 1/prod(k=1, m, 1-if(!isprime(k), x^k) + O(x*x^m)), -m), p)} \\ _Andrew Howroyd_, Apr 30 2021
%o A343813 (Python)
%o A343813 from sympy.utilities.iterables import partitions
%o A343813 from sympy import sieve, prime
%o A343813 def A343813(n):
%o A343813     p = prime(n)
%o A343813     pset = set(sieve.primerange(2,p+1))
%o A343813     return sum(1 for d in partitions(p) if len(set(d)&pset) > 0) # _Chai Wah Wu_, May 01 2021
%Y A343813 Cf. A000040, A058698, A235945.
%K A343813 nonn
%O A343813 1,2
%A A343813 _Paolo Xausa_, Apr 30 2021