cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343817 Refactorable numbers (A033950) which set a record for the gap to the next refactorable number.

Original entry on oeis.org

1, 2, 24, 40, 108, 156, 296, 732, 1692, 31616, 51608, 568720, 766620, 6195132, 6938752, 17879440, 18578320, 35196584, 228694176, 475292728, 589169184, 1451254356, 3252050592, 4865544096, 6328305120, 8082626976, 8694028264, 9112984448, 30328732568, 46093418640
Offset: 1

Views

Author

Amiram Eldar, Apr 30 2021

Keywords

Comments

Since the asymptotic density of the refactorable numbers is 0 (Kennedy and Cooper, 1990), this sequence is infinite.
The corresponding record values are 1, 6, 12, 16, 20, 24, 32, 44, 92, 100, 144, 152, 180, 192, 208, 212, 236, 268, 280, 296, 336, 360, 368, 372, 384, 396, 408, 432, 488, 496, ...

Examples

			The first 8 refactorable numbers are 1, 2, 8, 9, 12, 18, 24 and 36. The gaps between them are 1, 6, 1, 3, 6, 6 and 12. The record gaps, 1, 6 and 12, occur after the refactorable numbers 1, 2 and 24, which are the first 3 terms of this sequence.
		

Crossrefs

Programs

  • Mathematica
    refQ[n_] := Divisible[n, DivisorSigma[0, n]]; seq = {}; m = 1; dm = 0; Do[If[refQ[n], d = n - m; If[d > dm, dm = d; AppendTo[seq, m]]; m = n], {n, 2, 10^6}]; seq