This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343834 #20 Jun 02 2021 02:21:26 %S A343834 2,3,5,7,23,223,227,337,557,577,2333,2357,2377,2557,2777,33377,222337, %T A343834 222557,233357,233777,235577,2222333,2233337,2235557,3337777,3355777, %U A343834 5555777,22222223,22233577,23333357,23377777,25577777,222222227,222222557,222222577 %N A343834 Primes with digits in nondecreasing order, only primes, and with sum of digits also a prime. %C A343834 Intersection of A028864 and A062088. %H A343834 Michael S. Branicky, <a href="/A343834/b343834.txt">Table of n, a(n) for n = 1..10000</a> %t A343834 a[p_] := With[{dg = IntegerDigits@p}, PrimeQ@p && OrderedQ@dg && AllTrue[dg, PrimeQ] && PrimeQ@ Total@dg]; Cases[ Range[3*10^7], _?(a@# &)] (* or *) %t A343834 upToDigitLen[k_] := Cases[ FromDigits@# & /@ Select[ Flatten[ Table[ Tuples[{2, 3, 5, 7}, {i}], {i, k}], 1], OrderedQ[#] &], _?(PrimeQ@# && PrimeQ@ Total@ IntegerDigits@# &)]; upToDigitLen[10] %o A343834 (Python) %o A343834 from sympy import isprime %o A343834 from sympy.utilities.iterables import multiset_combinations %o A343834 def aupton(terms): %o A343834 n, digits, alst = 0, 1, [] %o A343834 while len(alst) < terms: %o A343834 mcstr = "".join(d*digits for d in "2357") %o A343834 for mc in multiset_combinations(mcstr, digits): %o A343834 sd = sum(int(d) for d in mc) %o A343834 if not isprime(sd): continue %o A343834 t = int("".join(mc)) %o A343834 if isprime(t): alst.append(t) %o A343834 if len(alst) == terms: break %o A343834 else: digits += 1 %o A343834 return alst %o A343834 print(aupton(35)) # _Michael S. Branicky_, May 01 2021 %Y A343834 Cf. A019546, A028864, A046704, A062088. %K A343834 nonn,base,easy %O A343834 1,1 %A A343834 _Mikk Heidemaa_, May 01 2021 %E A343834 a(33) and beyond from _Michael S. Branicky_, May 01 2021