This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343835 #9 May 02 2021 11:43:49 %S A343835 1,2,3,4,4,1,6,7,8,8,1,8,2,8,3,12,12,1,14,15,16,16,1,16,2,16,3,16,4, %T A343835 16,4,1,16,6,16,7,24,24,1,24,2,24,3,28,28,1,30,31,32,32,1,32,2,32,3, %U A343835 32,4,32,4,1,32,6,32,7,32,8,32,8,1,32,8,2,32,8,3 %N A343835 Irregular table T(n, k), n > 0, k = 1..A069010(n), read by rows; the n-th row contains the shortest partition of n whose values belong to A023758 and can be added without carriers in binary, in descending order. %C A343835 In other words, the n-th row gives the numerical values of the runs of 1's in the binary expansion of n. %H A343835 Rémy Sigrist, <a href="/A343835/b343835.txt">Table of n, a(n) for n = 1..6145</a> %H A343835 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a> %F A343835 T(n, 1) = A342126(n). %F A343835 T(n, A069010(n)) = A342410(n). %F A343835 Sum_{k = 1..A069010(n)} T(n, k) = n. %e A343835 Table begins: %e A343835 1: [1] %e A343835 2: [2] %e A343835 3: [3] %e A343835 4: [4] %e A343835 5: [4, 1] %e A343835 6: [6] %e A343835 7: [7] %e A343835 8: [8] %e A343835 9: [8, 1] %e A343835 10: [8, 2] %e A343835 11: [8, 3] %e A343835 12: [12] %e A343835 13: [12, 1] %e A343835 14: [14] %e A343835 15: [15] %e A343835 Table begins in binary: %e A343835 1: [1] %e A343835 10: [10] %e A343835 11: [11] %e A343835 100: [100] %e A343835 101: [100, 1] %e A343835 110: [110] %e A343835 111: [111] %e A343835 1000: [1000] %e A343835 1001: [1000, 1] %e A343835 1010: [1000, 10] %e A343835 1011: [1000, 11] %e A343835 1100: [1100] %e A343835 1101: [1100, 1] %e A343835 1110: [1110] %e A343835 1111: [1111] %o A343835 (PARI) row(n) = { my (rr=[]); while (n, my (z=valuation(n, 2), o=valuation(n/2^z+1, 2), r=(2^o-1)*2^z); n-=r; rr = concat(r, rr);); rr } %Y A343835 Cf. A023758, A069010, A272011, A342126, A342410, A343757. %K A343835 nonn,base,tabf,easy %O A343835 1,2 %A A343835 _Rémy Sigrist_, May 01 2021