This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343836 #13 Aug 09 2022 11:01:22 %S A343836 0,1,1,2,-1,2,3,3,3,3,4,4,-2,4,4,5,2,-4,-4,2,5,6,6,-3,-3,-3,6,6,7,7, %T A343836 10,-2,-2,10,7,7,8,5,8,8,-4,8,8,5,8,9,9,9,9,9,9,9,9,9,9,10,10,13,10, %U A343836 10,-5,10,10,13,10,10,11,8,11,11,8,-7,-7,8,11,11,8,11 %N A343836 Array T(n, k), n, k > 0, read by antidiagonals; the balanced ternary representation of T(n, k) is obtained by adding componentwise (i.e., without carries) the digits in the balanced ternary representations of n and of k. %C A343836 This sequence is similar to A003987 and to A004489. %C A343836 We use the following table to combine individual digits (this is the balanced ternary addition table read mod 3): %C A343836 | T 0 1 %C A343836 ---+------- %C A343836 T | 1 T 0 %C A343836 0 | T 0 1 %C A343836 1 | 0 1 T %H A343836 Rémy Sigrist, <a href="/A343836/b343836.txt">Table of n, a(n) for n = 0..10010</a> %H A343836 Rémy Sigrist, <a href="/A343836/a343836.png">Colored representation of the table for n, k < 1094</a> (blue denotes negative values, red denotes positive values, dark colors correspond to small values in absolute value) %H A343836 Wikipedia, <a href="https://en.wikipedia.org/wiki/Balanced_ternary#Addition,_subtraction_and_multiplication_and_division">Balanced ternary: Addition, subtraction and multiplication and division</a> %F A343836 T(n, k) = T(k, n). %F A343836 T(m, T(n, k)) = T(T(m, n), k). %F A343836 T(n, 0) = n. %F A343836 T(n, n) = -n. %e A343836 Array T(n, k) begins: %e A343836 n\k| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 %e A343836 ---+----------------------------------------------------------------- %e A343836 0| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 %e A343836 1| 1 -1 3 4 2 6 7 5 9 10 8 12 13 11 %e A343836 2| 2 3 -2 -4 -3 10 8 9 13 11 12 7 5 6 %e A343836 3| 3 4 -4 -3 -2 8 9 10 11 12 13 5 6 7 %e A343836 4| 4 2 -3 -2 -4 9 10 8 12 13 11 6 7 5 %e A343836 5| 5 6 10 8 9 -5 -7 -6 -11 -13 -12 -8 -10 -9 %e A343836 6| 6 7 8 9 10 -7 -6 -5 -13 -12 -11 -10 -9 -8 %e A343836 7| 7 5 9 10 8 -6 -5 -7 -12 -11 -13 -9 -8 -10 %e A343836 8| 8 9 13 11 12 -11 -13 -12 -8 -10 -9 -5 -7 -6 %e A343836 9| 9 10 11 12 13 -13 -12 -11 -10 -9 -8 -7 -6 -5 %e A343836 10| 10 8 12 13 11 -12 -11 -13 -9 -8 -10 -6 -5 -7 %e A343836 11| 11 12 7 5 6 -8 -10 -9 -5 -7 -6 -11 -13 -12 %e A343836 12| 12 13 5 6 7 -10 -9 -8 -7 -6 -5 -13 -12 -11 %e A343836 13| 13 11 6 7 5 -9 -8 -10 -6 -5 -7 -12 -11 -13 %e A343836 Array T(n, k) begins in balanced ternary: %e A343836 n\k| 0 1 1T 10 11 1TT 1T0 1T1 10T 100 101 11T 110 111 %e A343836 ---+---------------------------------------------------------------------- %e A343836 0| 0 1 1T 10 11 1TT 1T0 1T1 10T 100 101 11T 110 111 %e A343836 1| 1 T 10 11 1T 1T0 1T1 1TT 100 101 10T 110 111 11T %e A343836 1T| 1T 10 T1 TT T0 101 10T 100 111 11T 110 1T1 1TT 1T0 %e A343836 10| 10 11 TT T0 T1 10T 100 101 11T 110 111 1TT 1T0 1T1 %e A343836 11| 11 1T T0 T1 TT 100 101 10T 110 111 11T 1T0 1T1 1TT %e A343836 1TT| 1TT 1T0 101 10T 100 T11 T1T T10 TT1 TTT TT0 T01 T0T T00 %e A343836 1T0| 1T0 1T1 10T 100 101 T1T T10 T11 TTT TT0 TT1 T0T T00 T01 %e A343836 1T1| 1T1 1TT 100 101 10T T10 T11 T1T TT0 TT1 TTT T00 T01 T0T %e A343836 10T| 10T 100 111 11T 110 TT1 TTT TT0 T01 T0T T00 T11 T1T T10 %e A343836 100| 100 101 11T 110 111 TTT TT0 TT1 T0T T00 T01 T1T T10 T11 %e A343836 101| 101 10T 110 111 11T TT0 TT1 TTT T00 T01 T0T T10 T11 T1T %e A343836 11T| 11T 110 1T1 1TT 1T0 T01 T0T T00 T11 T1T T10 TT1 TTT TT0 %e A343836 110| 110 111 1TT 1T0 1T1 T0T T00 T01 T1T T10 T11 TTT TT0 TT1 %e A343836 111| 111 11T 1T0 1T1 1TT T00 T01 T0T T10 T11 T1T TT0 TT1 TTT %o A343836 (PARI) T(n,k,c=v->centerlift(Mod(v,3))) = { if (n==0 && k==0, return (0), my (d=c(n), t=c(k)); c(d+t)+3*T((n-d)/3, (k-t)/3)) } %Y A343836 Cf. A003987, A004489, A343316. %K A343836 sign,tabl,base %O A343836 0,4 %A A343836 _Rémy Sigrist_, May 01 2021