cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343843 a(n) = Sum_{k=0..n} (-1)^k*binomial(n, k)*A000831(k).

Original entry on oeis.org

1, -1, 1, -9, 33, -241, 1761, -15929, 161473, -1853281, 23584321, -330371049, 5047404513, -83546832721, 1489242229281, -28442492633369, 579425286625153, -12541705195066561, 287434687338368641, -6953491183101074889, 177069197398959999393, -4734481603905334522801
Offset: 0

Views

Author

Peter Luschny, May 06 2021

Keywords

Crossrefs

Programs

  • Maple
    a := n -> add((-1)^k*binomial(n, k)*A000831(k), k=0..n):
    seq(a(n), n = 0..21);
  • Mathematica
    Table[-1 + Sum[(-1)^k * Binomial[n, k] * 4^k * Abs[EulerE[k,1/2] + EulerE[k,1]], {k,0,n}], {n,0,20}] (* Vaclav Kotesovec, May 06 2021 *)

Formula

a(n) = (-2)^n*Sum_{k=0..n} A109449(n, k)*(-1/2)^k.
From Vaclav Kotesovec, May 06 2021: (Start)
a(n) ~ (-1)^n * exp(-Pi/4) * 4^(n+1) * n! / Pi^(n+1).
E.g.f.: exp(x)*(1 - tan(x))/(1 + tan(x)). (End)