cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343847 T(n, k) = (n - k)! * [x^(n-k)] exp(k*x/(1 - x))/(1 - x). Triangle read by rows, T(n, k) for 0 <= k <= n.

This page as a plain text file.
%I A343847 #24 May 09 2021 08:04:13
%S A343847 1,1,1,2,2,1,6,7,3,1,24,34,14,4,1,120,209,86,23,5,1,720,1546,648,168,
%T A343847 34,6,1,5040,13327,5752,1473,286,47,7,1,40320,130922,58576,14988,2840,
%U A343847 446,62,8,1,362880,1441729,671568,173007,32344,4929,654,79,9,1
%N A343847 T(n, k) = (n - k)! * [x^(n-k)] exp(k*x/(1 - x))/(1 - x). Triangle read by rows, T(n, k) for 0 <= k <= n.
%F A343847 T(n, k) = (-1)^(n - k)*U(k - n, 1, -k), where U is the Kummer U function.
%F A343847 T(n, k) = (n - k)! * L(n - k, -k), where L is the Laguerre polynomial function.
%F A343847 T(n, k) = (n - k)! * Sum_{j = 0..n - k} binomial(n - k, j) k^j / j!.
%F A343847 T(n, k) = (2*n-k-1)*T(n-1, k) - (n-k-1)^2*T(n-2, k) for n - k >= 2.
%e A343847 Triangle starts:
%e A343847 0:     1;
%e A343847 1:     1,      1;
%e A343847 2:     2,      2,     1;
%e A343847 3:     6,      7,     3,     1;
%e A343847 4:    24,     34,    14,     4,    1;
%e A343847 5:   120,    209,    86,    23,    5,   1;
%e A343847 6:   720,   1546,   648,   168,   34,   6,  1;
%e A343847 7:  5040,  13327,  5752,  1473,  286,  47,  7,  1;
%e A343847 8: 40320, 130922, 58576, 14988, 2840, 446, 62,  8,  1;
%e A343847 .
%e A343847 Array whose upward read antidiagonals are the rows of the triangle.
%e A343847 n\k   0       1       2        3        4         5        6
%e A343847 -----------------------------------------------------------------
%e A343847 0:    1,      1,      1,       1,       1,        1,        1, ...
%e A343847 1:    1,      2,      3,       4,       5,        6,        7, ...
%e A343847 2:    2,      7,     14,      23,      34,       47,       62, ...
%e A343847 3:    6,     34,     86,     168,     286,      446,      654, ...
%e A343847 4:   24,    209,    648,    1473,    2840,     4929,     7944, ...
%e A343847 5:  120,   1546,   5752,   14988,   32344,    61870,   108696, ...
%e A343847 6:  720,  13327,  58576,  173007,  414160,   866695,  1649232, ...
%e A343847 7: 5040, 130922, 671568, 2228544, 5876336, 13373190, 27422352, ...
%p A343847 T := proc(n, k) option remember;
%p A343847 if n = k then return 1 elif n = k+1 then return k+1 fi;
%p A343847 (2*n-k-1)*T(n-1, k) - (n-k-1)^2*T(n-2, k) end:
%p A343847 seq(print(seq(T(n ,k), k = 0..n)), n = 0..7);
%t A343847 T[n_, k_] := (-1)^(n - k) HypergeometricU[k - n, 1, -k];
%t A343847 Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten
%t A343847 (* Alternative: *)
%t A343847 TL[n_, k_] := (n - k)! LaguerreL[n - k, -k];
%t A343847 Table[TL[n, k], {n, 0, 9}, {k, 0, n}] // Flatten
%o A343847 (PARI)
%o A343847 T(n, k) = (n - k)!*sum(j=0, n - k, binomial(n - k, j) * k^j / j!)
%o A343847 for(n=0, 9, for(k=0, n, print(T(n, k))))
%o A343847 (SageMath) # Columns of the array.
%o A343847 def column(k, len):
%o A343847     R.<x> = PowerSeriesRing(QQ, default_prec=len)
%o A343847     f = exp(k * x / (1 - x)) / (1 - x)
%o A343847     return f.egf_to_ogf().list()
%o A343847 for col in (0..6): print(column(col, 20))
%Y A343847 Row sums: A343848. T(2*n, n) = A277373(n). Variant: A289192.
%Y A343847 Columns: A000142, A002720, A087912, A277382, A289147, A289211, A289212, A289213, A289214, A289215, A289216.
%Y A343847 Cf. A021009 (Laguerre polynomials), A344048.
%K A343847 nonn,tabl
%O A343847 0,4
%A A343847 _Peter Luschny_, May 07 2021