This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343856 #13 Mar 30 2024 23:08:07 %S A343856 1,1,1,1,1,2,1,1,2,2,2,1,1,2,2,2,4,2,2,1,1,2,2,2,4,2,2,8,2,2,4,1,1,2, %T A343856 2,2,4,2,2,8,2,2,4,8,8,4,2,2,8,1,1,2,2,2,4,2,2,8,2,2,4,8,8,4,2,2,8,8, %U A343856 8,16,4,4,4,2,2,16,1,1,2,2,2,4,2,2,8,2,2,4,8,8,4,2,2,8,8,8,16,4,4,4,2,2,16,8,8,16,16,16,8,4,4,8,2,2,4,16,16 %N A343856 Irregular table read by rows; the first row is [1]; to obtain the next row, replace each odd-indexed term u with (u, u), and each even-indexed term v with (2*v). %C A343856 Sequence A061419 and A343857 gives row lengths and partial sums, respectively. %C A343856 The n-th row sums to 2^(n-1). %C A343856 This sequence has fractal features. %C A343856 As with Jim Conant's iterative dissection of a square (A328078), at each iteration, we split in two odd-indexed elements. %C A343856 This sequence has similarities with A205592: in A205592: %C A343856 - we start with A205592(1) = 1, %C A343856 - for k = 1, 2, ...: %C A343856 if k is odd: append two copies of A205592(k), %C A343856 if k is even: append 2*A205592(k). %e A343856 Table begins: %e A343856 1: [1] %e A343856 2: [1, 1] %e A343856 3: [1, 1, 2] %e A343856 4: [1, 1, 2, 2, 2] %e A343856 5: [1, 1, 2, 2, 2, 4, 2, 2] %e A343856 6: [1, 1, 2, 2, 2, 4, 2, 2, 8, 2, 2, 4] %e A343856 7: [1, 1, 2, 2, 2, 4, 2, 2, 8, 2, 2, 4, 8, 8, 4, 2, 2, 8] %o A343856 (PARI) { a = r = [1]; for (n=1, 8, i = 0; a=concat(a, r = concat(apply (v -> if (i++%2, [v,v], [2*v]), r)))); print (a) } %o A343856 (Python) %o A343856 def auptorow(rows): %o A343856 alst, row, newrow = [1], [1], [] %o A343856 for r in range(2, rows+1): %o A343856 for i, v in enumerate(row, start=1): newrow += [v, v] if i%2 else [2*v] %o A343856 alst, row, newrow = alst + newrow, newrow, [] %o A343856 return alst %o A343856 print(auptorow(9)) # _Michael S. Branicky_, May 04 2021 %Y A343856 Cf. A061419, A205592, A328078, A343857. %K A343856 nonn,tabf %O A343856 1,6 %A A343856 _Rémy Sigrist_, May 01 2021