A343862 Number of ways to write n as x + y + z with x, y, z positive integers such that x^2*y^2 + 5*y^2*z^2 + 10*z^2*x^2 is a square.
0, 0, 1, 1, 1, 2, 2, 1, 1, 4, 2, 4, 2, 2, 5, 5, 3, 3, 2, 6, 4, 3, 3, 6, 6, 5, 2, 6, 4, 10, 3, 6, 4, 6, 6, 8, 5, 6, 4, 9, 7, 6, 3, 7, 9, 5, 5, 15, 5, 12, 11, 10, 5, 6, 7, 10, 8, 9, 7, 15, 7, 6, 7, 10, 10, 7, 9, 10, 10, 12, 4, 15, 9, 9, 11, 9, 7, 12, 11, 15, 8, 9, 7, 12, 10, 3, 9, 11, 11, 19, 12, 12, 9, 10, 6, 23, 11, 6, 10, 18
Offset: 1
Keywords
Examples
a(4) = 1 with 4 = 2 + 1 + 1 and 2^2*1^2 + 5*1^2*1^2 + 10*1^2*2^2 = 7^2. a(5) = 1 with 5 = 1 + 3 + 1 and 1^2*3^2 + 5*3^2*1^2 + 10*1^1*1^2 = 8^2. a(8) = 1 with 8 = 4 + 2 + 2 and 4^2*2^2 + 5*2^2*2^2 + 10*2^2*4^2 = 28^2. a(9) = 1 with 9 = 3 + 3 + 3 and 3^2*3^2 + 5*3^2*3^2 + 10*3^2*3^2 = 36^2. a(19) = 2. We have 19 = 4 + 5 + 10 with 4^2*5^2 + 5*5^2*10^2 + 10*10^2*4^2 = 170^2, and 19 = 4 + 13 + 2 with 4^2*13^2 + 5*13^2*2^2 + 10*2^2*4^2 = 82^2.
Links
- Martin Ehrenstein, Table of n, a(n) for n = 1..32767 (first 1500 terms from Zhi-Wei Sun)
- Zhi-Wei Sun, Refining Lagrange's four-square theorem, J. Number Theory 175(2017), 167-190. See also arXiv:1604.06723 [math.NT].
Programs
-
Mathematica
SQ[n_]:=IntegerQ[Sqrt[n]]; tab={};Do[r=0;Do[If[SQ[x^2*y^2+(n-x-y)^2*(5*y^2+10*x^2)],r=r+1],{x,1,n-2},{y,1,n-1-x}];tab=Append[tab,r],{n,1,100}];Print[tab]
Comments