cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343862 Number of ways to write n as x + y + z with x, y, z positive integers such that x^2*y^2 + 5*y^2*z^2 + 10*z^2*x^2 is a square.

Original entry on oeis.org

0, 0, 1, 1, 1, 2, 2, 1, 1, 4, 2, 4, 2, 2, 5, 5, 3, 3, 2, 6, 4, 3, 3, 6, 6, 5, 2, 6, 4, 10, 3, 6, 4, 6, 6, 8, 5, 6, 4, 9, 7, 6, 3, 7, 9, 5, 5, 15, 5, 12, 11, 10, 5, 6, 7, 10, 8, 9, 7, 15, 7, 6, 7, 10, 10, 7, 9, 10, 10, 12, 4, 15, 9, 9, 11, 9, 7, 12, 11, 15, 8, 9, 7, 12, 10, 3, 9, 11, 11, 19, 12, 12, 9, 10, 6, 23, 11, 6, 10, 18
Offset: 1

Views

Author

Zhi-Wei Sun, May 02 2021

Keywords

Comments

Conjecture 1: a(n) > 0 for all n > 2.
We have verified a(n) > 0 for all n = 3..10000. Conjecture 1 holds if a(p) > 0 for each odd prime p. For any n > 0 we have a(3*n) > 0 since 3*n = n + n + n and 1 + 5 + 10 = 4^2.
See also A340274 for a similar conjecture.
Conjecture 2: There are infinitely many triples (a,b,c) of positive integers such that each n = 3,4,... can be written as x + y + z with x,y,z positive integers and a*x^2*y^2 + b*y^2*z^2 + c*z^2*x^2 a square.
Such triple candidates include (21,19,9), (23,17,9), (24,16,9), (25,14,10), (29,19,16), (33,27,21), (35,9,5), (37,32,31) etc.
Conjecture 1 holds for all n < 2^15. - Martin Ehrenstein, May 02 2021

Examples

			a(4) = 1 with 4 = 2 + 1 + 1 and 2^2*1^2 + 5*1^2*1^2 + 10*1^2*2^2 = 7^2.
a(5) = 1 with 5 = 1 + 3 + 1 and 1^2*3^2 + 5*3^2*1^2 + 10*1^1*1^2 = 8^2.
a(8) = 1 with 8 = 4 + 2 + 2 and 4^2*2^2 + 5*2^2*2^2 + 10*2^2*4^2 = 28^2.
a(9) = 1 with 9 = 3 + 3 + 3 and 3^2*3^2 + 5*3^2*3^2 + 10*3^2*3^2 = 36^2.
a(19) = 2. We have 19 = 4 + 5 + 10 with 4^2*5^2 + 5*5^2*10^2 + 10*10^2*4^2 = 170^2, and 19 = 4 + 13 + 2 with 4^2*13^2 + 5*13^2*2^2 + 10*2^2*4^2 = 82^2.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=IntegerQ[Sqrt[n]];
    tab={};Do[r=0;Do[If[SQ[x^2*y^2+(n-x-y)^2*(5*y^2+10*x^2)],r=r+1],{x,1,n-2},{y,1,n-1-x}];tab=Append[tab,r],{n,1,100}];Print[tab]