This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343863 #23 May 03 2021 08:20:51 %S A343863 1,1,2,1,2,3,1,2,5,4,1,2,9,16,5,1,2,17,82,65,6,1,2,33,460,1313,326,7, %T A343863 1,2,65,2674,29441,32826,1957,8,1,2,129,15796,684545,3680126,1181737, %U A343863 13700,9,1,2,257,94042,16175105,427840626,794907217,57905114,109601,10 %N A343863 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) = (n!)^k * Sum_{j=1..n} (1/j!)^k. %H A343863 Seiichi Manyama, <a href="/A343863/b343863.txt">Antidiagonals n = 0..59, flattened</a> %F A343863 T(0,k) = 1 and T(n,k) = n^k * T(n-1,k) + 1 for n > 0. %e A343863 Square array begins: %e A343863 1, 1, 1, 1, 1, 1, ... %e A343863 2, 2, 2, 2, 2, 2, ... %e A343863 3, 5, 9, 17, 33, 65, ... %e A343863 4, 16, 82, 460, 2674, 15796, ... %e A343863 5, 65, 1313, 29441, 684545, 16175105, ... %e A343863 6, 326, 32826, 3680126, 427840626, 50547203126, ... %t A343863 T[n_, k_] := Sum[(n!/j!)^k, {j, 0, n}]; Table[T[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* _Amiram Eldar_, May 03 2021 *) %o A343863 (PARI) T(n, k) = sum(j=0, n, (n!/j!)^k); %Y A343863 Columns 0..3 give A000027(n+1), A000522, A006040, A217284. %Y A343863 Main diagonal gives A336247. %Y A343863 Cf. A291556. %K A343863 nonn,tabl %O A343863 0,3 %A A343863 _Seiichi Manyama_, May 02 2021