This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343877 #13 May 29 2025 15:46:43 %S A343877 0,0,0,1,0,3,0,3,1,3,0,10,0,3,3,6,0,10,0,10,3,3,0,21,1,3,3,10,0,21,0, %T A343877 10,3,3,3,28,0,3,3,21,0,21,0,10,10,3,0,36,1,10,3,10,0,21,3,21,3,3,0, %U A343877 55,0,3,10,15,3,21,0,10,3,21,0,55,0,3,10,10,3,21,0,36,6,3,0,55 %N A343877 Number of pairs (d1, d2) of divisors of n such that d1<d2, d1|n, d2|n, and d1 + d2 <= n. %C A343877 a(n) = 0 if and only if n is noncomposite. %F A343877 a(n) = Sum_{k=1..floor(n/2)} Sum_{i=1..k-1} c(n/k) * c(n/i), where c(n) = 1 - ceiling(n) + floor(n). %F A343877 a(n) = (1/2)*tau(n)^2 - (3/2)*tau(n) + 1. - _Ridouane Oudra_, May 29 2025 %e A343877 a(12) = 10; The 10 pairs are (1,2), (1,3), (1,4), (1,6), (2,3), (2,4), (2,6), (3,4), (3,6), (4,6). %t A343877 Table[Sum[Sum[(1 - Ceiling[n/k] + Floor[n/k]) (1 - Ceiling[n/i] + Floor[n/i]), {i, k - 1}], {k, Floor[n/2]}], {n, 100}] %o A343877 (PARI) a(n) = sumdiv(n, d1, sumdiv(n, d2, if ((d1 < d2) && (d1+d2 <= n), 1))); \\ _Michel Marcus_, May 02 2021 %Y A343877 Cf. A343824, A000005. %K A343877 nonn %O A343877 1,6 %A A343877 _Wesley Ivan Hurt_, May 02 2021