This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343880 #17 Oct 12 2021 21:54:37 %S A343880 1,4,8,14,20,28,37,46,57,69,82,95,110,125,142,159,177,196,216,238,260, %T A343880 285,310,335,362,390,418,448,478,511,544,578,613,648,685,722,761,800, %U A343880 842,884,927,971,1018,1065,1112,1161,1210,1259,1309,1361,1413,1467,1521 %N A343880 Positions of 0's in A342585. %C A343880 This sequence is infinite. %H A343880 Rémy Sigrist, <a href="/A343880/b343880.txt">Table of n, a(n) for n = 1..10000</a> %H A343880 Rémy Sigrist, <a href="/A343880/a343880.gp.txt">PARI program for A343880</a> %H A343880 Rémy Sigrist, <a href="/A343880/a343880.png">Colored scatterplot of (n, a(n+1)-a(n)) for n = 1..9999</a> (where the color is function of a(n+1)-a(n)) %e A343880 A342585(8) = 0, so 8 belongs to the sequence. %t A343880 Position[Block[{c, k, m}, c[0] = 1; {0}~Join~Reap[Do[k = 0; While[IntegerQ[c[k]], Set[m, c[k]]; Sow[m]; If[IntegerQ@ c[m], c[m]++, c[m] = 1]; k++]; Sow[0]; c[0]++, 52]][[-1, -1]]], 0][[All, 1]] (* _Michael De Vlieger_, Oct 12 2021 *) %o A343880 (PARI) See Links section. %o A343880 (Python) %o A343880 from collections import Counter %o A343880 def aupton(terms): %o A343880 num, A342585lst, inventory, alst, idx = 0, [0], Counter([0]), [1], 1 %o A343880 while len(alst) < terms: %o A343880 idx += 1 %o A343880 c = inventory[num] %o A343880 if c == 0: %o A343880 num = 0 %o A343880 alst.append(idx) %o A343880 else: %o A343880 num += 1 %o A343880 A342585lst.append(c) %o A343880 inventory.update([c]) %o A343880 return alst %o A343880 print(aupton(53)) # _Michael S. Branicky_, Oct 12 2021 %Y A343880 Cf. A342585. %K A343880 nonn %O A343880 1,2 %A A343880 _Rémy Sigrist_, May 02 2021