This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343891 #24 May 05 2021 21:05:14 %S A343891 4,3,6,12,10,15,15,12,20,21,15,35,24,21,28,35,30,42,40,36,45,45,35,63, %T A343891 55,40,88,56,44,77,60,55,66,63,56,72,72,52,117,77,63,99,80,65,104,84, %U A343891 78,91,91,70,130,99,90,110,105,77,165,112,105,120,117,99,143,120,85,204,132,102,187 %N A343891 List of primitive triples (a, b, c) for integer-sided triangles where side a is the harmonic mean of the 2 other sides b and c, i.e., 2/a = 1/b + 1/c with b < a < c. %C A343891 The triples (a, b, c) are displayed in increasing order of side a, and if sides a coincide then in increasing order of the side b. %C A343891 When sides satisfy 2/a = 1/b + 1/c, or a = 2*b*c/(b+c) then a is always the middle side with b < a < c. %C A343891 Equivalent relations: the heights and sines satisfy 2*h_a = h_b + h_c and 2/sin(A) = 1/sin(B) + 1/sin(C). %C A343891 Inequalities between sides: a/2 < b < a < c < b*(1+sqrt(2)). %D A343891 V. Lespinard & R. Pernet, Trigonométrie, Classe de Mathématiques élémentaires, programme 1962, problème B-337 p. 179, André Desvigne. %e A343891 (4, 3, 6) is the first triple with 2/4 = 1/3 + 1/6 and 6-4 < 3 < 6+4. %e A343891 The table begins: %e A343891 4, 3, 6; %e A343891 12, 10, 15; %e A343891 15, 12, 20; %e A343891 21, 15, 35; %e A343891 24, 21, 28; %e A343891 35, 30, 42; %e A343891 ... %p A343891 for a from 4 to 200 do %p A343891 for b from floor(a/2)+1 to a-1 do %p A343891 c := a*b/(2*b-a); %p A343891 if c=floor(c) and igcd(a,b,c)=1 and c-b<a then print(a,b,c); end if; %p A343891 end do; %p A343891 end do; %Y A343891 Cf. A020883 (side a), A343892 (side b), A343893 (side c), A343894 (perimeter). %K A343891 nonn,tabf %O A343891 1,1 %A A343891 _Bernard Schott_, May 03 2021