cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343893 Side c of integer-sided primitive triangles (a, b, c) where side a is the harmonic mean of the 2 other sides b and c, i.e., 2/a = 1/b + 1/c with b < a < c.

Original entry on oeis.org

6, 15, 20, 35, 28, 42, 45, 63, 88, 77, 66, 72, 117, 99, 104, 91, 130, 110, 165, 120, 143, 204, 187, 170, 156, 153, 221, 247, 195, 228, 266, 209, 190, 238, 210, 273, 285, 231, 255, 368, 336, 345, 304, 322, 391, 272, 299, 276, 425, 357, 450, 323, 400, 414, 513, 350, 325, 342, 475, 459
Offset: 1

Views

Author

Bernard Schott, May 06 2021

Keywords

Comments

The triples (a, b, c) are displayed in increasing order of side a, and if sides a coincide then in increasing order of the side b.
The sequence is not increasing because a(4) = 35 > a(5) = 28, but, these sides c are listed in increasing order in A020886.
For the corresponding primitive triples and miscellaneous properties and references, see A343891.

Examples

			a(3) = 20, because the third triple is (15, 12, 20) with side c = 20, satisfying 1/20 = 2/15 - 1/12 and 15-12 < 20 < 15+12.
		

Crossrefs

Cf. A343891 (triples), A020883 (side a), A343892 (side b), A343894 (perimeter).
Cf. A020886 (sides c ordered).

Programs

  • Maple
    for a from 4 to 200 do
    for b from floor(a/2)+1 to a-1 do
    c := a*b/(2*b-a);
    if c=floor(c) and igcd(a,b,c)=1 and c-b
    				

Formula