This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343896 #21 May 11 2021 01:54:09 %S A343896 1,2,11,104,1405,24694,534223,13719404,407730041,13760958410, %T A343896 519827337331,21726980525392,995403499490101,49600090942276094, %U A343896 2670566242480261175,154500457959360271124,9557826199486960327153,629586464929967678553874,43994787057844036765113691 %N A343896 a(n) = Sum_{k=0..n} (-1)^(n-k) * k! * binomial(n,k) * binomial(2*n+1,k). %H A343896 Seiichi Manyama, <a href="/A343896/b343896.txt">Table of n, a(n) for n = 0..366</a> %H A343896 Wikipedia, <a href="https://en.wikipedia.org/wiki/Laguerre_polynomials">Laguerre polynomials</a> %H A343896 <a href="/index/La#Laguerre">Index entries for sequences related to Laguerre polynomials</a> %F A343896 a(n) = (2*n+1)! * Sum_{k=0..n} (-1)^k * binomial(n,k)/(k+n+1)!. %F A343896 a(n) = n! * Sum_{k=0..n} (-1)^(n-k) * binomial(2*n+1,k)/(n-k)!. %F A343896 a(n) = n! * LaguerreL(n, n+1, 1). %F A343896 a(n) = n! * [x^n] exp(-x/(1 - x))/(1 - x)^(n+2). %F A343896 a(n) ~ 2^(2*n + 3/2) * n^n / exp(n+1). - _Vaclav Kotesovec_, May 03 2021 %t A343896 a[n_] := n!*LaguerreL[n, n + 1, 1]; Array[a, 19, 0] (* _Amiram Eldar_, May 11 2021 *) %o A343896 (PARI) a(n) = sum(k=0, n, (-1)^(n-k)*k!*binomial(n, k)*binomial(2*n+1, k)); %o A343896 (PARI) a(n) = (2*n+1)!*sum(k=0, n, (-1)^k*binomial(n, k)/(k+n+1)!); %o A343896 (PARI) a(n) = n!*sum(k=0, n, (-1)^(n-k)*binomial(2*n+1, k)/(n-k)!); %o A343896 (PARI) a(n) = n!*pollaguerre(n, n+1, 1); %Y A343896 Cf. A006902, A343832, A343890. %K A343896 nonn %O A343896 0,2 %A A343896 _Seiichi Manyama_, May 03 2021