cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343896 a(n) = Sum_{k=0..n} (-1)^(n-k) * k! * binomial(n,k) * binomial(2*n+1,k).

This page as a plain text file.
%I A343896 #21 May 11 2021 01:54:09
%S A343896 1,2,11,104,1405,24694,534223,13719404,407730041,13760958410,
%T A343896 519827337331,21726980525392,995403499490101,49600090942276094,
%U A343896 2670566242480261175,154500457959360271124,9557826199486960327153,629586464929967678553874,43994787057844036765113691
%N A343896 a(n) = Sum_{k=0..n} (-1)^(n-k) * k! * binomial(n,k) * binomial(2*n+1,k).
%H A343896 Seiichi Manyama, <a href="/A343896/b343896.txt">Table of n, a(n) for n = 0..366</a>
%H A343896 Wikipedia, <a href="https://en.wikipedia.org/wiki/Laguerre_polynomials">Laguerre polynomials</a>
%H A343896 <a href="/index/La#Laguerre">Index entries for sequences related to Laguerre polynomials</a>
%F A343896 a(n) = (2*n+1)! * Sum_{k=0..n} (-1)^k * binomial(n,k)/(k+n+1)!.
%F A343896 a(n) = n! * Sum_{k=0..n} (-1)^(n-k) * binomial(2*n+1,k)/(n-k)!.
%F A343896 a(n) = n! * LaguerreL(n, n+1, 1).
%F A343896 a(n) = n! * [x^n] exp(-x/(1 - x))/(1 - x)^(n+2).
%F A343896 a(n) ~ 2^(2*n + 3/2) * n^n / exp(n+1). - _Vaclav Kotesovec_, May 03 2021
%t A343896 a[n_] := n!*LaguerreL[n, n + 1, 1]; Array[a, 19, 0] (* _Amiram Eldar_, May 11 2021 *)
%o A343896 (PARI) a(n) = sum(k=0, n, (-1)^(n-k)*k!*binomial(n, k)*binomial(2*n+1, k));
%o A343896 (PARI) a(n) = (2*n+1)!*sum(k=0, n, (-1)^k*binomial(n, k)/(k+n+1)!);
%o A343896 (PARI) a(n) = n!*sum(k=0, n, (-1)^(n-k)*binomial(2*n+1, k)/(n-k)!);
%o A343896 (PARI) a(n) = n!*pollaguerre(n, n+1, 1);
%Y A343896 Cf. A006902, A343832, A343890.
%K A343896 nonn
%O A343896 0,2
%A A343896 _Seiichi Manyama_, May 03 2021