cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343897 Number of ways to write n as 2*x + y + z with x,y,z positive integers such that 16*x^2*y^2 + 19*y^2*z^2 + 29*z^2*x^2 is a square.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 3, 2, 1, 2, 4, 2, 1, 3, 1, 3, 1, 5, 2, 2, 6, 1, 1, 5, 5, 6, 2, 2, 4, 2, 4, 5, 6, 3, 2, 3, 2, 5, 2, 7, 10, 4, 1, 3, 3, 10, 9, 2, 5, 5, 10, 6, 7, 6, 7, 8, 8, 4, 7, 4, 5, 8, 2, 4, 4, 13, 9, 5, 6, 10, 11, 6, 11, 6, 6, 5, 4, 4, 10, 9, 8, 8, 8, 8, 9, 16, 5, 5, 6, 4, 7, 3, 12, 7, 11, 13
Offset: 1

Views

Author

Zhi-Wei Sun, May 03 2021

Keywords

Comments

Conjecture: a(n) > 0 for all n > 3.
We have verified a(n) > 0 for all n = 4..10000. The conjecture holds if a(p) > 0 for each odd prime p.
It seems that a(n) = 1 only for n = 4..9, 13, 17, 19, 21, 26, 27, 47.

Examples

			a(4) = 1 with 4 = 2*1 + 1 + 1 and 16*1^2*1^2 + 19*1^2*1^2 + 29*1^2*1^2 = 8^2.
a(6) = 1 with 6 = 2*1 + 2 + 2 and 16*1^2*2^2 + 19*2^2*2^2 + 29*2^2*1^2 = 22^2.
a(9) = 1 with 9 = 2*2 + 4 + 1 and 16*2^2*4^2 + 19*4^2*1^2 + 29*1^2*2^2 = 38^2.
a(13) = 1 with 13 = 2*5 + 2 + 1 and 16*5^2*2^2 + 19*2^2*1^2 + 29*1^2*5^2 = 49^2.
a(19) = 1 with 19 = 2*2 + 14 + 1 and 16*2^2*14^2 + 19*14^2*1^2 + 29*1^2*2^2 = 128^2.
a(47) = 1 with 47 = 2*13 + 13 + 8 and 16*13^2*13^2 + 19*13^2*8^2 + 29*8^2*13^2 = 988^2.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=IntegerQ[Sqrt[n]];
    tab={};Do[r=0;Do[If[SQ[16(x*y)^2+(n-2x-y)^2*(19*y^2+29x^2)],r=r+1],{x,1,(n-2)/2},{y,1,n-1-2x}];tab=Append[tab,r],{n,1,100}];Print[tab]