This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343898 #25 May 05 2021 01:54:51 %S A343898 1,2,11,244,14741,1799366,383827807,130673579576,66583061972009, %T A343898 48379301165408266,48265538214413425331,64129741094923528310012, %U A343898 110669722298686436099306941,242891356723607474283206170574,665950191893557715599111566813191,2246102991406652396042587363523672896 %N A343898 a(n) = Sum_{k=0..n} (k!)^3 * binomial(n,k). %C A343898 Binomial transform of (n!)^3. %H A343898 Seiichi Manyama, <a href="/A343898/b343898.txt">Table of n, a(n) for n = 0..181</a> %F A343898 G.f.: Sum_{k>=0} (k!)^3 * x^k/(1 - x)^(k+1). %F A343898 E.g.f.: exp(x) * Sum_{k>=0} (k!)^2 * x^k. %F A343898 a(n) ~ (n!)^3. - _Vaclav Kotesovec_, May 03 2021 %t A343898 a[n_] := Sum[(k!)^3 * Binomial[n, k], {k, 0, n}]; Array[a, 16, 0] (* _Amiram Eldar_, May 05 2021 *) %o A343898 (PARI) a(n) = sum(k=0, n, k!^3*binomial(n, k)); %o A343898 (PARI) my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, k!^3*x^k/(1-x)^(k+1))) %o A343898 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x)*sum(k=0, N, k!^2*x^k))) %Y A343898 Cf. A000522, A046662, A343899, A343900. %K A343898 nonn %O A343898 0,2 %A A343898 _Seiichi Manyama_, May 03 2021