This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343899 #23 May 05 2021 01:55:11 %S A343899 1,2,7,232,332669,24884861086,139314218808181027, %T A343899 82606412229102532926819812,6984964247802365417561163907914436537, %U A343899 109110688415634181158572146813823590758078301022074,395940866122426284350759726810156652343313286283891529199276099071 %N A343899 a(n) = Sum_{k=0..n} (k!)^k * binomial(n,k). %C A343899 Binomial transform of (n!)^n. %H A343899 Seiichi Manyama, <a href="/A343899/b343899.txt">Table of n, a(n) for n = 0..30</a> %F A343899 G.f.: Sum_{k>=0} (k! * x)^k/(1 - x)^(k+1). %F A343899 E.g.f.: exp(x) * Sum_{k>=0} (k!)^(k-1) * x^k. %t A343899 a[n_] := Sum[(k!)^k * Binomial[n, k], {k, 0, n}]; Array[a, 11, 0] (* _Amiram Eldar_, May 05 2021 *) %o A343899 (PARI) a(n) = sum(k=0, n, k!^k*binomial(n, k)); %o A343899 (PARI) my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (k!*x)^k/(1-x)^(k+1))) %o A343899 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x)*sum(k=0, N, k!^(k-1)*x^k))) %Y A343899 Cf. A000522, A036740, A046662, A086331, A343898, A343900, A343928. %K A343899 nonn %O A343899 0,2 %A A343899 _Seiichi Manyama_, May 03 2021