This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343908 #27 May 31 2021 19:27:09 %S A343908 2,7,19,11,37,17,89,23,73,149,97,41,127,47,239,163,181,431,71,359,223, %T A343908 83,419,271,101,307,107,967,113,569,131,397,1237,421,2239,457,1103, %U A343908 167,839,523,541,547,577,197,1777,601,1481,227,3863,233,3499,2633,727,757,1289,1319,811,1901,281,1409 %N A343908 a(n) is the least prime == 4 (mod prime(n)). %H A343908 Alois P. Heinz, <a href="/A343908/b343908.txt">Table of n, a(n) for n = 1..10000</a> %e A343908 a(3) = 19 because 19 is the least prime == 4 (mod prime(3)). %e A343908 a(4) = 11 because 11 is the least prime == 4 (mod prime(4)). %p A343908 a:= proc(n) local q, p; p:= ithprime(n); q:= p; %p A343908 do if irem(q-4, p)=0 then break fi; %p A343908 q:= nextprime(q); %p A343908 od; q %p A343908 end: %p A343908 seq(a(n), n=1..60); # _Alois P. Heinz_, May 03 2021 %t A343908 s = {}; p = 5; Do[q = p + 2; While[Mod[q, p] != 4, q = NextPrime[q]]; AppendTo[s, q]; p = NextPrime[p], {100}]; s %o A343908 (PARI) a(n) = my(p=prime(n)); forprime(q=2,, if (Mod(q, p) == 4, return(q))); \\ _Michel Marcus_, May 03 2021 %Y A343908 Cf. A000040, A023200 (primes p such that p+4 is also prime), A034694, A035095, A279756. %K A343908 nonn %O A343908 1,1 %A A343908 _Zak Seidov_, May 03 2021