This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343913 #36 Nov 04 2023 13:27:45 %S A343913 71,347,1193,2139,2709,17823,18337,26057,32847,34037,65793,87519, %T A343913 159541,245573,383037,421957,489731,520547,574841,800589,1291333, %U A343913 2010341,2113003,2990187,4528667,7430553,8284063,8402417,8520567,9220519,9865989,10621507,11961043,12335203,16405581,17648561,22224647,22918853,24171273 %N A343913 Positive integers m such that 2*m^2 - 1 = x^4 + y^4 for some nonnegative integers x and y with |x - y| > 1. %C A343913 Conjecture: The sequence has infinitely many terms. %C A343913 Clearly all the terms must be odd and not divisible by 5. Note also that 2*(n^2+n+1)^2 - 1 = n^4 + (n+1)^4. %C A343913 See also A343917 for a similar conjecture. %H A343913 Robert Israel, <a href="/A343913/b343913.txt">Table of n, a(n) for n = 1..112</a> (all terms < 10^10; first 53 terms from Zhi-Wei Sun) %e A343913 a(1) = 71, and 2*71^2 - 1 = 10^4 + 3^4 with |10 - 3| > 1. %e A343913 a(53) = 99532937, and 2*99532937^2 - 1 = 19813611095691937 = 11337^4 + 7576^4 with |11337 - 7576| > 1. %p A343913 N:= 10^18: # for all terms <= sqrt(N) %p A343913 R:= {}: count:= 0: %p A343913 for x from 1 while 2*x^4 < 2*N-1 do %p A343913 for y from x+3 by 2 do %p A343913 v:= (x^4 + y^4 + 1)/2; %p A343913 if v > N then break fi; %p A343913 if issqr(v) then %p A343913 m:= sqrt(v); %p A343913 if not member(m,R) then %p A343913 count:= count+1; R:= R union {m}; %p A343913 fi fi %p A343913 od od: %p A343913 sort(convert(R,list)); # _Robert Israel_, May 04 2021 %t A343913 QQ[n_]:=IntegerQ[n^(1/4)]; %t A343913 n=0;Do[Do[If[QQ[2*m^2-1-(2x)^4]&&Abs[2x-(2*m^2-1-(2x)^4)^(1/4)]>1,n=n+1;Print[n," ",m];Goto[aa]],{x,0,((2m^2-1)^(1/4))/2}];Label[aa],{m,1,25000000}] %Y A343913 Cf. A000290, A000583, A003336, A056220, A343917. %K A343913 nonn %O A343913 1,1 %A A343913 _Zhi-Wei Sun_, May 03 2021