cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343932 a(n) = (Sum_{k=1..n} k^k) mod n.

This page as a plain text file.
%I A343932 #19 Jun 18 2022 19:55:58
%S A343932 0,1,2,0,3,5,5,4,1,7,3,4,11,13,3,4,0,15,0,4,14,13,10,20,22,11,25,20,
%T A343932 21,1,18,4,6,17,27,12,31,27,20,28,6,41,34,32,31,45,45,4,11,25,39,48,
%U A343932 21,45,46,12,53,47,41,32,9,5,55,4,25,7,47,8,45,19,12,60,50,43,20,60,54,29,72,36,70,31,74,40,69,7,18,20,63,3,24,32
%N A343932 a(n) = (Sum_{k=1..n} k^k) mod n.
%H A343932 Seiichi Manyama, <a href="/A343932/b343932.txt">Table of n, a(n) for n = 1..10000</a>
%F A343932 a(n) = A001923(n) mod n.
%t A343932 a[n_] := Mod[Sum[PowerMod[k, k, n], {k, 1, n}], n]; Array[a, 100] (* _Amiram Eldar_, May 04 2021 *)
%o A343932 (PARI) a(n) = sum(k=1, n, k^k)%n;
%o A343932 (Python)
%o A343932 def A343932(n): return sum(pow(k,k,n) for k in range(1,n+1)) % n # _Chai Wah Wu_, Jun 18 2022
%Y A343932 Cf. A001923, A128981, A182398, A188775, A188776.
%K A343932 nonn,easy
%O A343932 1,3
%A A343932 _Seiichi Manyama_, May 04 2021