A343935 Number of ways to choose a multiset of n divisors of n.
1, 3, 4, 15, 6, 84, 8, 165, 55, 286, 12, 6188, 14, 680, 816, 4845, 18, 33649, 20, 53130, 2024, 2300, 24, 2629575, 351, 3654, 4060, 237336, 30, 10295472, 32, 435897, 7140, 7770, 8436, 177232627, 38, 10660, 11480, 62891499, 42, 85900584, 44, 1906884, 2118760
Offset: 1
Keywords
Examples
The a(1) = 1 through a(5) = 6 multisets: {1} {1,1} {1,1,1} {1,1,1,1} {1,1,1,1,1} {1,2} {1,1,3} {1,1,1,2} {1,1,1,1,5} {2,2} {1,3,3} {1,1,1,4} {1,1,1,5,5} {3,3,3} {1,1,2,2} {1,1,5,5,5} {1,1,2,4} {1,5,5,5,5} {1,1,4,4} {5,5,5,5,5} {1,2,2,2} {1,2,2,4} {1,2,4,4} {1,4,4,4} {2,2,2,2} {2,2,2,4} {2,2,4,4} {2,4,4,4} {4,4,4,4}
Crossrefs
Diagonal n = k of A343658.
Choosing n divisors of n - 1 gives A343936.
The version for chains of divisors is A343939.
A000005 counts divisors.
A000312 = n^n.
A007318 counts k-sets of elements of {1..n}.
A009998 = n^k (as an array, offset 1).
A059481 counts k-multisets of elements of {1..n}.
A146291 counts divisors of n with k prime factors (with multiplicity).
A253249 counts nonempty chains of divisors of n.
Strict chains of divisors:
- A067824 counts strict chains of divisors starting with n.
- A074206 counts strict chains of divisors from n to 1.
- A251683 counts strict length k + 1 chains of divisors from n to 1.
- A334996 counts strict length-k chains of divisors from n to 1.
- A337255 counts strict length-k chains of divisors starting with n.
- A337256 counts strict chains of divisors of n.
- A343662 counts strict length-k chains of divisors.
Programs
-
Mathematica
multchoo[n_,k_]:=Binomial[n+k-1,k]; Table[multchoo[DivisorSigma[0,n],n],{n,25}]
-
Python
from math import comb from sympy import divisor_count def A343935(n): return comb(divisor_count(n)+n-1,n) # Chai Wah Wu, Jul 05 2024