This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343941 #8 Jun 12 2021 06:09:02 %S A343941 0,0,1,0,1,2,3,3,4,5,7,8,10,11,14,15,18,20,23,25,29,31,35,38,42,45,50, %T A343941 53,58,62,67,71,77,81,87,92,98,103,110,115,122,128,135,141,149,155, %U A343941 163,170,178,185,194,201,210,218,227,235,245,253,263,272,282,291,302 %N A343941 Number of strict integer partitions of 2n with reverse-alternating sum 4. %C A343941 The reverse-alternating sum of a partition (y_1,...,y_k) is Sum_i (-1)^(k-i) y_i. This is equal to (-1)^(m-1) times the number of odd parts in the conjugate partition, where m is the number of parts, so a(n) is the number of strict odd-length integer partitions of 2n whose conjugate has exactly 4 odd parts (first example). By conjugation, this is also the number partitions of 2n covering an initial interval and containing exactly four odd parts, one of which is the greatest (second example). %e A343941 The a(2) = 1 through a(12) = 10 strict partitions (empty column indicated by dot, A..D = 10..13): %e A343941 4 . 521 532 543 653 763 873 983 A93 BA3 %e A343941 631 642 752 862 972 A82 B92 CA2 %e A343941 741 851 961 A71 B81 C91 DA1 %e A343941 64321 65421 65432 76432 76542 %e A343941 75321 75431 76531 86541 %e A343941 76421 86431 87432 %e A343941 86321 87421 87531 %e A343941 97321 97431 %e A343941 98421 %e A343941 A8321 %e A343941 The a(2) = 1 through a(8) = 5 partitions covering an initial interval: %e A343941 1111 . 32111 33211 33321 333221 543211 543321 %e A343941 322111 332211 3322211 3332221 5432211 %e A343941 3222111 32222111 33222211 33322221 %e A343941 322222111 332222211 %e A343941 3222222111 %t A343941 sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]],{i,Length[y]}]; %t A343941 Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&sats[#]==4&]],{n,0,30,2}] %Y A343941 The non-reverse non-strict version is A000710. %Y A343941 The non-reverse version is A026810. %Y A343941 The non-strict version is column k = 2 of A344610. %Y A343941 This is column k = 2 of A344649. %Y A343941 A000041 counts partitions of 2n with alternating sum 0, ranked by A000290. %Y A343941 A103919 counts partitions by sum and alternating sum (reverse: A344612). %Y A343941 A120452 counts partitions of 2n with rev-alt sum 2 (negative: A344741). %Y A343941 A124754 gives alternating sums of standard compositions (reverse: A344618). %Y A343941 A316524 is the alternating sum of the prime indices of n (reverse: A344616). %Y A343941 A344611 counts partitions of 2n with reverse-alternating sum >= 0. %Y A343941 Cf. A000070, A000097, A003242, A006330, A027187, A119899, A152146, A239830, A325535, A344604, A344607, A344608, A344650, A344739. %K A343941 nonn %O A343941 0,6 %A A343941 _Gus Wiseman_, Jun 09 2021 %E A343941 More terms from _Bert Dobbelaere_, Jun 12 2021