This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343942 #8 Jun 12 2021 06:09:08 %S A343942 0,1,2,3,4,6,9,13,19,27,38,52,71,96,128,170,224,292,380,491,630,805, %T A343942 1024,1295,1632,2049,2560,3189,3959,4896,6038,7424,9100,11125,13565, %U A343942 16496,20013,24223,29249,35244,42378,50849,60896,72789,86841,103424,122960,145937,172928 %N A343942 Number of even-length strict integer partitions of 2n+1. %C A343942 By conjugation, also the number of integer partitions of 2n+1 covering an initial interval of positive integers with greatest part even. %F A343942 The Heinz numbers are A005117 /\ A028260 /\ A300063. %e A343942 The a(1) = 1 through a(7) = 13 strict partitions: %e A343942 (2,1) (3,2) (4,3) (5,4) (6,5) (7,6) (8,7) %e A343942 (4,1) (5,2) (6,3) (7,4) (8,5) (9,6) %e A343942 (6,1) (7,2) (8,3) (9,4) (10,5) %e A343942 (8,1) (9,2) (10,3) (11,4) %e A343942 (10,1) (11,2) (12,3) %e A343942 (5,3,2,1) (12,1) (13,2) %e A343942 (5,4,3,1) (14,1) %e A343942 (6,4,2,1) (6,4,3,2) %e A343942 (7,3,2,1) (6,5,3,1) %e A343942 (7,4,3,1) %e A343942 (7,5,2,1) %e A343942 (8,4,2,1) %e A343942 (9,3,2,1) %t A343942 Table[Length[Select[IntegerPartitions[2n+1],UnsameQ@@#&&EvenQ[Length[#]]&]],{n,0,15}] %Y A343942 Ranked by A005117 (strict), A028260 (even length), and A300063 (odd sum). %Y A343942 Odd bisection of A067661 (non-strict: A027187). %Y A343942 The non-strict version is A236914. %Y A343942 The opposite type of strict partition (odd length and even sum) is A344650. %Y A343942 A000041 counts partitions of 2n with alternating sum 0, ranked by A000290. %Y A343942 A103919 counts partitions by sum and alternating sum (reverse: A344612). %Y A343942 A344610 counts partitions by sum and positive reverse-alternating sum. %Y A343942 Cf. A000070, A000097, A030229, A035294, A067659, A236559, A338907, A343941, A344649, A344654, A344739. %K A343942 nonn %O A343942 0,3 %A A343942 _Gus Wiseman_, Jun 09 2021 %E A343942 More terms from _Bert Dobbelaere_, Jun 12 2021