cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343950 Number of ways to write n as x + y + z with x^2 + 4*y^2 + 5*z^2 a square, where x,y,z are positive integers with y or z a positive power of two.

Original entry on oeis.org

0, 0, 0, 1, 1, 0, 0, 3, 1, 2, 2, 2, 3, 1, 4, 3, 2, 3, 3, 4, 4, 2, 1, 4, 6, 4, 2, 3, 12, 5, 3, 5, 8, 4, 5, 5, 8, 4, 7, 4, 4, 4, 7, 5, 5, 1, 4, 6, 5, 6, 6, 10, 7, 4, 9, 5, 10, 16, 7, 7, 9, 6, 5, 5, 14, 8, 6, 6, 3, 7, 1, 5, 4, 10, 5, 7, 10, 8, 13, 10, 3, 4, 8, 5, 12, 7, 20, 9, 12, 5, 8, 1, 9, 4, 8, 9, 8, 7, 4, 10
Offset: 1

Views

Author

Zhi-Wei Sun, May 05 2021

Keywords

Comments

Conjecture 1: a(n) > 0 for all n > 7.
We have verified a(n) > 0 for all n = 8..50000. Clearly, a(2*n) > 0 if a(n) > 0.
Conjecture 2: For any integer n > 7, we can write n as x + y + z with x,y,z positive integers such that x^2 + 2*y^2 + 3*z^2 is a square.
Conjecture 3: For any integer n > 4, we can write n as x + y + z with x,y,z positive integers such that 3*x^2 + 4*y^2 + 5*z^2 (or x^2 + 3*y^2 + 5*z^2) is a square.

Examples

			a(4) = 1, and 4 = 1 + 1 + 2 with 1^2 + 4*1^2 + 5*2^2 = 5^2.
a(5) = 1, and 5 = 2 + 2 + 1 with 2^2 + 4*2^2 + 5*1^2 = 5^2.
a(9) = 1, and 9 = 4 + 1 + 4 with 4^2 + 4*1^2 + 5*4^2 = 10^2.
a(14) = 1, and 14 = 7 + 5 + 2 with 7^2 + 4*5^2 + 5*2^2 = 13^2.
a(23) = 1, and 23 = 7 + 8 + 8 with 7^2 + 4*8^2 + 5*8^2 = 25^2.
a(46) = 1, and 46 = 14 + 16 + 16 with 14^2 + 4*16^2 + 5*16^2 = 50^2.
a(71) = 1, and 71 = 42 + 8 + 21 with 42^2 + 4*8^2 + 5*21^2 = 65^2.
a(92) = 1, and 92 = 28 + 32 + 32 with 28^2 + 4*32^2 + 5*32^2 = 100^2.
a(142) = 1, and 142 = 84 + 16 + 42 with 84^2 + 4*16^2 + 5*42^2 = 130^2.
		

Crossrefs

Programs

  • Mathematica
    PowQ[n_]:=PowQ[n]=n>1&&IntegerQ[Log[2,n]];
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
    tab={};Do[r=0;Do[If[(PowQ[y]||PowQ[n-x-y])&&SQ[x^2+4*y^2+5*(n-x-y)^2],r=r+1],{x,1,n-3},{y,1,n-1-x}];tab=Append[tab,r],{n,1,100}];Print[tab]