This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343951 #15 May 05 2021 18:13:15 %S A343951 0,1,2,3,4,5,6,7,8,9,12,13,14,15,16,17,18,19,21,23,24,25,26,27,28,29, %T A343951 31,32,34,35,36,37,38,39,41,42,43,45,46,47,48,49,51,52,53,54,56,57,58, %U A343951 59,61,62,63,64,65,67,68,69,71,72,73,74,75,76,78,79,81,82 %N A343951 Numbers with decimal expansion (d_1, ..., d_k) such that all the sums d_i + ... + d_j with 1 <= i <= j <= k are distinct. %C A343951 This sequence is finite, the last term being a(5562) = 8657913. %C A343951 All positive terms are zeroless (A052382) and have distinct decimal digits (A010784). %C A343951 There are 10, 72, 440, 1622, 2502, 906, 10, and 0 terms with 1..8 digits, resp. - _Michael S. Branicky_, May 05 2021 %H A343951 Rémy Sigrist, <a href="/A343951/b343951.txt">Table of n, a(n) for n = 1..5562</a> %e A343951 Regarding 12458: %e A343951 - we have the following partial sums of digits: %e A343951 i\j| 1 2 3 4 5 %e A343951 ---+--------------- %e A343951 1| 1 3 7 12 20 %e A343951 2| . 2 6 11 19 %e A343951 3| . . 4 9 17 %e A343951 4| . . . 5 13 %e A343951 5| . . . . 8 %e A343951 - as they are all distinct, 12458 is a term. %o A343951 (PARI) is(n) = { my (d=digits(n), s=setbinop((i,j)->vecsum(d[i..j]), [1..#d])); #s==#d*(#d+1)/2 } %o A343951 (Python) %o A343951 def ok(n): %o A343951 d, sums = str(n), set() %o A343951 for i in range(len(d)): %o A343951 for j in range(i, len(d)): %o A343951 sij = sum(map(int, d[i:j+1])) %o A343951 if sij in sums: return False %o A343951 else: sums.add(sij) %o A343951 return True %o A343951 print(list(filter(ok, range(83)))) # _Michael S. Branicky_, May 05 2021 %Y A343951 Cf. A010784, A052382, A101274. %K A343951 nonn,base,fini,full %O A343951 1,3 %A A343951 _Rémy Sigrist_, May 05 2021